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Prerequisites

Calculus (gradients, Hessian)

Linear algebra (vectors, matrices)

Probability (expectation, covariance matrix)



Goal

Analyze regression and linear regression from a probabilistic perspective



Constant estimate

Goal: Estimate a quantity represented by a random variable ỹ

If we have no data (but we know the distribution) what is the best estimate
in terms of mean squared error (MSE)?

arg min
c∈R

E
(
(c − ỹ)2) = E

(
c2 − 2cỹ + ỹ2)

= c2 − 2cE (ỹ) + E
(
ỹ2) = g(c)



Constant estimate

g(c) := c2 − 2cE (ỹ) + E
(
ỹ2)

g ′(c) = 2(c − E(ỹ))

g ′′(c) = 2

Convex with minimum at E(ỹ)!

The mean is the best constant estimate in terms of MSE



Regression

Goal: Estimate response (or dependent variable)

Data: Several observed variables, known as features (or covariates,
or independent variables)



Probabilistic perspective

Response: random variable ỹ

Features: random vector x̃

What estimator (function of x̃) minimizes mean squared error?



Minimum mean squared error

We observe x̃ = x

Uncertainty about ỹ is captured by pdf (or pmf) fỹ | x̃=x of ỹ given x̃ = x

Let w̃ have that distribution

What is the minimum MSE estimate?

min
c

E[(w̃ − c)2]

The mean of w , which equals the conditional mean

E(ỹ | x̃ = x) =

∫
y∈R

y fỹ | x̃ (y | x) dx
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Are we done?

Assume we have 5 features with 100 possible values each

How many conditional averages do we need to estimate? 1010!

This is known as the curse of dimensionality



Linear regression

We need to make assumptions

Simple but powerful assumption: Relationship is linear (or rather affine)

ỹ ≈ βT x̃ + β0

For fixed β ∈ Rp and β0 ∈ R

Mathematically, gradient of the regression function is constant
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Estimating minimum from maximum temperature
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Linear regression

Constant term is a bit annoying

ỹ ≈ βT x̃ + β0

Idea: Since β0 is a constant offset, can we just center everything?

c(ỹ) := ỹ − E(ỹ)

c(x̃) := x̃ − E(x̃)



Centering

For fixed β ∈ Rp what is the optimal β0?

arg min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E(ỹ − x̃Tβ)

Plugging in:

min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E

[
(ỹ − x̃Tβ − E(ỹ) + E(x̃)Tβ)2

]
= E

[
(c(ỹ)− βT c(x̃))2

]
From now on, everything will be centered (i.e. zero mean)



MSE

Goal: Find β minimizing

E
[
(ỹ − x̃Tβ)2

]
= E

(
ỹ2)− 2E (ỹ x̃)T β + βTE(x̃ x̃T )β

= βTΣx̃β − 2ΣT
ỹx̃β + Var (ỹ) = f (β)

where the cross-covariance vector equals

Σỹ x̃ [i ] := E (ỹ x̃ [i ]) , 1 ≤ i ≤ p



MSE function

Quadratic form

f (β) := βTΣx̃β − 2ΣT
ỹx̃β + Var (ỹ)

= βTAβ + bTβ + c

How does it look like?



Convex?



Concave?



Neither?



Gradient and Hessian

Quadratic form

f (β) := βTAβ + bTβ + c

∇f (β) = 2Aβ + b

∇2f (β) = 2A



Gradient

Determines tangent plane

If gradient is zero, tangent plane is horizontal

We focus on point β∗ where gradient is zero

∇f (β) = 2Aβ∗ + b = 0

and rewrite the quadratic form setting

b = −2Aβ∗

Note that we have

f (β∗) = (β∗)TAβ∗ + bTβ∗ + c

= −(β∗)TAβ∗ + c



Linear minimum MSE estimator

Quadratic form

f (β) := βTAβ − bTβ + c

= βTAβ − 2(β∗)TAβ + c

= (β − β∗)TA(β − β∗)− (β∗)TAβ∗ + c

= (β − β∗)TA(β − β∗) + f (β∗)

(assuming A is symmetric)

If for any nonzero v vTAv > 0 then β∗ is the solution!



Covariance matrices are positive semidefinite

For any vector v ∈ Rp

vTΣx̃v = Var
(
vT x̃

)
≥ 0

If Σx̃ is full rank, then positive definite



So the MSE looks like this!



Linear minimum MSE estimator

Quadratic form

f (β) := βTΣx̃β − 2ΣT
ỹx̃β + Var (ỹ)

∇f (β) = 2Σx̃β − 2Σỹ x̃= 0

β∗ = Σ−1
x̃ Σx̃ ỹ

Corresponding MSE

E
[
(ỹ − x̃TΣ−1

x̃ Σx̃ ỹ )2
]

= E(ỹ2) + ΣT
x̃ỹΣ−1

x̃ E(x̃ x̃T )Σ−1
x̃ Σx̃ ỹ − 2E(ỹ x̃T )Σ−1

x̃ Σx̃ ỹ

= Var(ỹ)− ΣT
x̃ỹΣ−1

x̃ Σx̃ ỹ



Additive model

Assume independent additive noise with zero mean ỹ = x̃Tβtrue + z̃

Var(ỹ) = Var(x̃Tβtrue + z̃)

= βTtrueE(x̃ x̃T )βtrue + Var (z̃)

= βTtrueΣx̃βtrue + Var (z̃)

Σx̃ ỹ = E
(
x̃(x̃Tβtrue + z̃)

)
= Σx̃βtrue

MSE = Var(ỹ)− ΣT
x̃ỹΣ−1

x̃ Σx̃ ỹ

= βTtrueΣx̃βtrue + Var(z̃)− βTtrueΣx̃Σ−1
x̃ Σx̃βtrue

= Var(z̃)



What have we learned?

I Mean is best constant estimate in terms of MSE

I Conditional mean is best regression estimate in terms of MSE
(but we often can’t compute it)

I Best linear estimate only depends on covariance matrix of features,
and covariance between features and response


