

Mean squared error estimation

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Carlos Fernandez-Granda

Prerequisites

Calculus (gradients, Hessian)

Linear algebra (vectors, matrices)

Probability (expectation, covariance matrix)

Goal							
Analyze	regression	and linear	regression	from a p	probabilistic	perspecti	ve

Constant estimate

Goal: Estimate a quantity represented by a random variable \tilde{y}

If we have no data (but we know the distribution) what is the best estimate in terms of mean squared error (MSE)?

$$\begin{split} \arg\min_{c \in \mathbb{R}} \mathrm{E}\left((c-\tilde{y})^2\right) &= \mathrm{E}\left(c^2 - 2c\tilde{y} + \tilde{y}^2\right) \\ &= c^2 - 2c\mathrm{E}\left(\tilde{y}\right) + \mathrm{E}\left(\tilde{y}^2\right) = \underline{g}(c) \end{split}$$

Constant estimate

$$g(c) := c^2 - 2c \operatorname{E}(\tilde{y}) + \operatorname{E}(\tilde{y}^2)$$
$$g'(c) = 2(c - \operatorname{E}(\tilde{y}))$$
$$g''(c) = 2$$

Convex with minimum at $E(\tilde{y})!$

The mean is the best constant estimate in terms of MSE

Regression

Goal: Estimate response (or dependent variable)

Data: Several observed variables, known as features (or covariates, or independent variables)

Probabilistic perspective

Response: random variable \tilde{y}

Features: random vector \tilde{x}

What estimator (function of \tilde{x}) minimizes mean squared error?

Minimum mean squared error

We observe $\tilde{x} = x$

Uncertainty about \tilde{y} is captured by pdf (or pmf) $f_{\tilde{y}\,|\,\tilde{x}=x}$ of \tilde{y} given $\tilde{x}=x$

Let \tilde{w} have that distribution

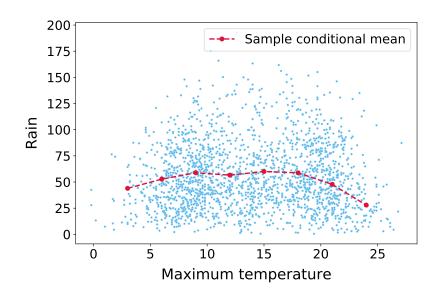
What is the minimum MSE estimate?

$$\min_{c} \mathrm{E}[(\tilde{w}-c)^2]$$

The mean of w, which equals the conditional mean

$$E(\tilde{y} \mid \tilde{x} = x) = \int_{y \in \mathbb{R}} y \, f_{\tilde{y} \mid \tilde{x}} (y \mid x) \, dx$$

Estimating rain from temperature



Are we done?

Assume we have 5 features with 100 possible values each

How many conditional averages do we need to estimate? 10¹⁰!

This is known as the curse of dimensionality

Linear regression

We need to make assumptions

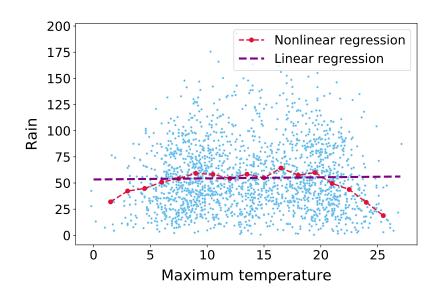
Simple but powerful assumption: Relationship is linear (or rather affine)

$$\tilde{\mathbf{y}} \approx \boldsymbol{\beta}^T \tilde{\mathbf{x}} + \beta_0$$

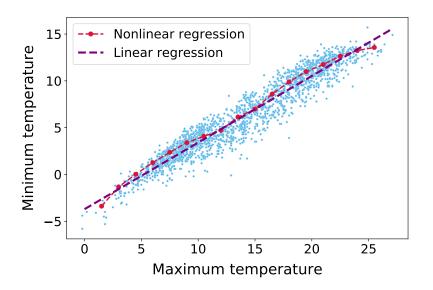
For fixed $\beta \in \mathbb{R}^p$ and $\beta_0 \in \mathbb{R}$

Mathematically, gradient of the regression function is constant

Estimating rain from temperature



Estimating minimum from maximum temperature



Linear regression

Constant term is a bit annoying

$$\tilde{y} \approx \beta^T \tilde{x} + \frac{\beta_0}{}$$

Idea: Since β_0 is a constant offset, can we just center everything?

$$c(\tilde{y}) := \tilde{y} - \mathrm{E}(\tilde{y})$$

$$c(\tilde{x}) := \tilde{x} - \mathrm{E}(\tilde{x})$$

Centering

For fixed $\beta \in \mathbb{R}^p$ what is the optimal β_0 ?

$$\arg\min_{\beta_0} \mathrm{E}\left[(\tilde{y} - \tilde{x}^T \beta - \beta_0)^2 \right] = \mathrm{E}(\tilde{y} - \tilde{x}^T \beta)$$

Plugging in:

$$\min_{\beta_0} E \left[(\tilde{y} - \tilde{x}^T \beta - \beta_0)^2 \right] = E \left[(\tilde{y} - \tilde{x}^T \beta - E(\tilde{y}) + E(\tilde{x})^T \beta)^2 \right]$$
$$= E \left[(c(\tilde{y}) - \beta^T c(\tilde{x}))^2 \right]$$

From now on, everything will be centered (i.e. zero mean)

MSE

Goal: Find β minimizing

$$E\left[(\tilde{y} - \tilde{x}^T \beta)^2 \right] = E\left(\tilde{y}^2 \right) - 2E\left(\tilde{y} \tilde{x} \right)^T \beta + \beta^T E(\tilde{x} \tilde{x}^T) \beta$$
$$= \beta^T \Sigma_{\tilde{x}} \beta - 2\Sigma_{\tilde{y} \tilde{x}}^T \beta + Var\left(\tilde{y} \right) = f(\beta)$$

where the cross-covariance vector equals

$$\Sigma_{\tilde{y}\tilde{x}}[i] := \mathrm{E}\left(\tilde{y}\,\tilde{x}[i]\right), \quad 1 \leq i \leq p$$

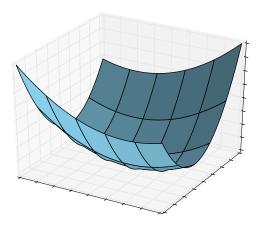
MSE function

Quadratic form

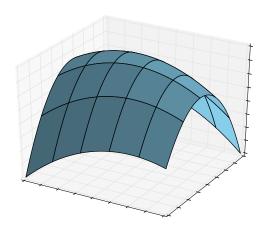
$$f(\beta) := \beta^{T} \Sigma_{\tilde{x}} \beta - 2 \Sigma_{\tilde{y}\tilde{x}}^{T} \beta + \operatorname{Var}(\tilde{y})$$
$$= \beta^{T} A \beta + b^{T} \beta + c$$

How does it look like?

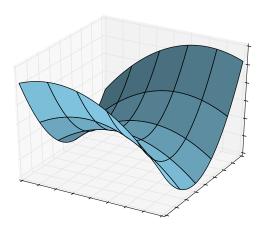
Convex?



Concave?



Neither?



Gradient and Hessian

Quadratic form

$$f(\beta) := \beta^T A \beta + b^T \beta + c$$

$$\nabla f(\beta) = 2A\beta + b$$

$$\nabla^2 f(\beta) = 2A$$

Gradient

Determines tangent plane

If gradient is zero, tangent plane is horizontal

We focus on point β^* where gradient is zero

$$\nabla f(\beta) = 2A\beta^* + b = 0$$

and rewrite the quadratic form setting

$$b = -2A\beta^*$$

Note that we have

$$f(\beta^*) = (\beta^*)^T A \beta^* + b^T \beta^* + c$$
$$= -(\beta^*)^T A \beta^* + c$$

Linear minimum MSE estimator

Quadratic form

$$f(\beta) := \beta^T A \beta - b^T \beta + c$$

$$= \beta^T A \beta - 2(\beta^*)^T A \beta + c$$

$$= (\beta - \beta^*)^T A (\beta - \beta^*) - (\beta^*)^T A \beta^* + c$$

$$= (\beta - \beta^*)^T A (\beta - \beta^*) + f(\beta^*)$$

(assuming A is symmetric)

If for any nonzero $v \ v^T A v > 0$ then β^* is the solution!

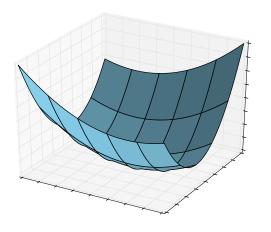
Covariance matrices are positive semidefinite

For any vector $v \in \mathbb{R}^p$

$$v^T \Sigma_{\tilde{x}} v = \operatorname{Var}\left(v^T \tilde{x}\right) \ge 0$$

If $\Sigma_{\tilde{x}}$ is full rank, then positive definite

So the MSE looks like this!



Linear minimum MSE estimator

Quadratic form

$$f(\beta) := \beta^{T} \Sigma_{\tilde{x}} \beta - 2 \Sigma_{\tilde{y}\tilde{x}}^{T} \beta + \text{Var}(\tilde{y})$$
$$\nabla f(\beta) = 2 \Sigma_{\tilde{x}} \beta - 2 \Sigma_{\tilde{y}\tilde{x}} = 0$$
$$\beta^{*} = \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}}$$

Corresponding MSE

$$\begin{split}
& \operatorname{E}\left[\left(\tilde{y} - \tilde{x}^{T} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}}\right)^{2}\right] \\
& = \operatorname{E}(\tilde{y}^{2}) + \Sigma_{\tilde{x}\tilde{y}}^{T} \Sigma_{\tilde{x}}^{-1} \operatorname{E}(\tilde{x}\tilde{x}^{T}) \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}} - 2\operatorname{E}(\tilde{y}\tilde{x}^{T}) \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}} \\
& = \operatorname{Var}(\tilde{y}) - \Sigma_{\tilde{x}\tilde{y}}^{T} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}}
\end{split}$$

Additive model

Assume independent additive noise with zero mean $\tilde{y} = \tilde{x}^T \beta_{\mathsf{true}} + \tilde{z}$

$$\begin{aligned} \operatorname{Var}(\tilde{y}) &= \operatorname{Var}(\tilde{x}^T \beta_{\mathsf{true}} + \tilde{z}) \\ &= \beta_{\mathsf{true}}^T \operatorname{E}(\tilde{x} \tilde{x}^T) \beta_{\mathsf{true}} + \operatorname{Var}(\tilde{z}) \\ &= \beta_{\mathsf{true}}^T \Sigma_{\tilde{x}} \beta_{\mathsf{true}} + \operatorname{Var}(\tilde{z}) \\ \\ \Sigma_{\tilde{x}\tilde{y}} &= \operatorname{E}\left(\tilde{x}(\tilde{x}^T \beta_{\mathsf{true}} + \tilde{z})\right) \\ &= \Sigma_{\tilde{x}} \beta_{\mathsf{true}} \\ \\ \mathsf{MSE} &= \operatorname{Var}(\tilde{y}) - \Sigma_{\tilde{x}\tilde{y}}^T \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}\tilde{y}} \\ &= \beta_{\mathsf{true}}^T \Sigma_{\tilde{x}} \beta_{\mathsf{true}} + \operatorname{Var}(\tilde{z}) - \beta_{\mathsf{true}}^T \Sigma_{\tilde{x}} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x}} \beta_{\mathsf{true}} \\ &= \operatorname{Var}(\tilde{z}) \end{aligned}$$

What have we learned?

- Mean is best constant estimate in terms of MSE
- Conditional mean is best regression estimate in terms of MSE (but we often can't compute it)
- Best linear estimate only depends on covariance matrix of features, and covariance between features and response