



#### Ordinary least squares

#### DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science https://cims.nyu.edu/~cfgranda/pages/MTDS\_spring20/index.html

Carlos Fernandez-Granda

## Prerequisites

Linear algebra (vectors, matrices)

Mean-squared-error estimation

Derive ordinary-least-squares estimator (in two different ways)

## Regression

Goal: Estimate response (or dependent variable)

Data: Several observed variables, known as features (or covariates, or independent variables)

# Probabilistic perspective

Response: random variable  $\tilde{y}$ 

Features: random vector  $\tilde{x}$ 

Linear minimum MSE estimator

$$\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}}}^{-1}\boldsymbol{\Sigma}_{\tilde{\boldsymbol{x}}\tilde{\boldsymbol{y}}} = \arg\min_{\boldsymbol{\beta}} \operatorname{E}\left[ (\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{x}}^{\mathsf{T}}\boldsymbol{\beta})^2 \right]$$

We need to compute covariance and cross-covariance from data!

Training data:  $(y_1, x_1)$ ,  $(y_2, x_2)$ , ...,  $(y_n, x_n)$ , where  $y_i \in \mathbb{R}$  and  $x_i \in \mathbb{R}^p$ We define a response vector  $y \in \mathbb{R}^n$  and a feature matrix

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

# Estimation via averaging

$$\Sigma_{\tilde{x}} \approx \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T = \frac{1}{n} X X^T$$
$$\Sigma_{\tilde{y}\tilde{x}} \approx \begin{bmatrix} \frac{1}{n} \sum_{i=1}^{n} x_i [1] y_i \\ \frac{1}{n} \sum_{i=1}^{n} x_i [2] y_i \\ \dots \\ \frac{1}{n} \sum_{i=1}^{n} x_i [p] y_i \end{bmatrix} = \frac{1}{n} X y$$

 $\Sigma_{\tilde{x}}^{-1}\Sigma_{\tilde{y}\tilde{x}} \approx (XX^{T})^{-1}Xy$ 

## Ordinary least squares cost function

Reasonable cost function beyond probabilistic assumptions

$$\begin{split} \beta_{\text{OLS}} &:= \arg\min_{\beta} \sum_{i=1}^{n} \left( y_{i} - x_{i}^{T} \beta \right)^{2} \\ &= \arg\min_{\beta} \|y - X^{T} \beta\|_{2}^{2} \\ &= \arg\min_{\beta} \beta^{T} X X^{T} \beta - 2 y^{T} X^{T} \beta + y^{T} y \end{split}$$

Quadratic form

If  $XX^{T}$  is positive definite, then solution is point where gradient is zero

## Ordinary least squares

If X is full rank, for any  $v \neq 0$ 

$$v^T X X^T v = ||Xv||_2^2 > 0$$

so  $XX^T$  is positive definite

$$\nabla f(\beta) = 2XX^{T}\beta - 2Xy$$

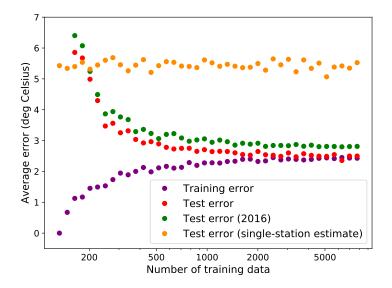
Setting to zero yields

$$\beta_{\mathsf{OLS}} = (XX^{\mathsf{T}})^{-1}Xy$$

Temperature prediction via linear regression

- Dataset of hourly temperatures measured at weather stations all over the US
- ► Goal: Predict temperature in Yosemite from other temperatures
- Response: Temperature in Yosemite
- Features: Temperatures in 133 other stations (p = 133) in 2015
- ► Test set: 10<sup>3</sup> measurements
- Additional test set: All measurements from 2016

## Results



What have we learned?

OLS estimator can be derived from linear minimum MSE estimator or from least-squares cost function