Linear regression (blended lecture)

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Review questions on MSE estimation

Linear minimum MSE estimator

Singular-value decomposition

Questions

- What is the minimum MSE estimate of \tilde{y} given \tilde{x} ?
- Is it easy to approximate?
- Do you know any methods for nonlinear regression?

Questions

- What is the minimum MSE estimate of \tilde{y} given \tilde{x} ? $\mathrm{E}(\tilde{y} \mid \tilde{x})$
- Is it easy to approximate?
- Do you know any methods for nonlinear regression?

Questions

- What is the minimum MSE estimate of \tilde{y} given \tilde{x} ? $\mathrm{E}(\tilde{y} \mid \tilde{x})$
- Is it easy to approximate?

No, unless possible values of \tilde{x} are very restricted

- Do you know any methods for nonlinear regression?

Questions

- What is the minimum MSE estimate of \tilde{y} given $\tilde{x} ? \mathrm{E}(\tilde{y} \mid \tilde{x})$
- Is it easy to approximate? No, unless possible values of \tilde{x} are very restricted
- Do you know any methods for nonlinear regression? Nearest neighbors, kernel regression, neural networks

Review questions on MSE estimation

Linear minimum MSE estimator

Singular-value decomposition

Helicopter

Goal: Recording voice of pilot in helicopter
Voice modeled by zero-mean random variable \tilde{y} with variance 1
Microphone inside helmet:

$$
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z}
$$

Microphone outside helmet:

$$
\tilde{x}[2]=\alpha \tilde{y}+\tilde{z}
$$

Noise in helicopter modeled by zero-mean random variable \tilde{z} with variance 100 uncorrelated from \tilde{y}

Linear minimum MSE estimation

Linear minimum MSE estimator of \tilde{y} given \tilde{x}

$$
\beta^{*}=\Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x} \tilde{y}}
$$

Corresponding MSE

$$
\mathrm{E}\left[\left(\tilde{y}-\tilde{x}^{T} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x} \tilde{y}}\right)^{2}\right]=\operatorname{Var}(\tilde{y})-\Sigma_{\tilde{x} \tilde{y}}^{T} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x} \tilde{y}}
$$

Linear minimum MSE estimate of \tilde{y} given $\tilde{x}[1]$

$$
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z}
$$

$$
\hat{y}(\tilde{x}[1])=
$$

Linear minimum MSE estimate of \tilde{y} given $\tilde{x}[1]$

$$
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z}
$$

$$
\begin{aligned}
\hat{y}(\tilde{x}[1]) & =\tilde{x}[1] \sum_{\tilde{x}[1]}^{-1} \sum_{\tilde{x}[1] \tilde{y}} \\
& =\frac{\tilde{x}[1]}{1+100 \alpha^{2}}
\end{aligned}
$$

Additive model

Assume additive noise with zero mean $\tilde{y}=\tilde{x}^{\top} \beta_{\text {true }}+\tilde{w}$

$$
\mathrm{MSE}=\operatorname{Var}(\tilde{w})
$$

In our case $\tilde{y}=\tilde{x}[1]-\alpha \tilde{z}$ so the MSE is

$$
\operatorname{Var}(\alpha \tilde{z})=100 \alpha^{2}
$$

Is this correct?

MSE

$$
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z}
$$

MSE =

MSE

$$
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z}
$$

$$
\text { MSE }=\operatorname{Var}(\tilde{y})-\Sigma_{\tilde{x}[1] \tilde{y}}^{T} \Sigma_{\tilde{x}[1]}^{-1} \Sigma_{\tilde{x}[1] \tilde{y}}=\frac{100 \alpha^{2}}{1+100 \alpha^{2}}
$$

Linear minimum MSE estimate of \tilde{y} given \tilde{x}

$$
\begin{gathered}
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z} \quad \tilde{x}[2]=\alpha \tilde{y}+\tilde{z} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]}
\end{gathered}
$$

$$
\hat{y}(\tilde{x})=
$$

Linear minimum MSE estimate of \tilde{y} given \tilde{x}

$$
\begin{gathered}
\tilde{x}[1]=\tilde{y}+\alpha \tilde{z} \quad \tilde{x}[2]=\alpha \tilde{y}+\tilde{z} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]}
\end{gathered}
$$

$$
\hat{y}(\tilde{x})=\tilde{x}^{T} \Sigma_{\tilde{x}}^{-1} \Sigma_{\tilde{x} \tilde{y}}=\frac{\tilde{x}[1]-\alpha \tilde{x}[2]}{1-\alpha^{2}} \quad \text { MSE? }
$$

Review questions on MSE estimation

Linear minimum MSE estimator

Singular-value decomposition

Computing SVD from random inputs

We observe $\tilde{y}:=A \tilde{x}$, where \tilde{x} is zero mean and $\Sigma_{\tilde{x}}=I$
How can we compute the singular values of A ?

Adversarial perturbation

$$
\beta_{\mathrm{OLS}}:=\arg \min _{\beta}\left\|y-X^{\top} \beta\right\|_{2}^{2}
$$

What $z \in \mathbb{R}^{n}\left(\|z\|_{2} \leq \gamma\right)$ perturbs β_{OLS} the most when added to y ?

$$
\begin{aligned}
\beta_{\mathrm{OLS}}^{\bmod }(z) & :=\arg \min _{\beta}\left\|y+z-X^{\top} \beta\right\|_{2}^{2} \\
z_{\mathrm{OLS}}^{\text {adv }} & :=\arg \max _{\|z\|_{2} \leq \gamma}\left\|\beta_{\mathrm{OLS}}-\beta_{\mathrm{OLS}}^{\bmod (z)}\right\|_{2}^{2}
\end{aligned}
$$

Adversarial perturbation

$$
\beta_{\mathrm{OLS}}:=\arg \min _{\beta}\left\|y-X^{\top} \beta\right\|_{2}^{2}
$$

What $z \in \mathbb{R}^{n}\left(\|z\|_{2} \leq \gamma\right)$ perturbs $\beta_{\text {OLS }}$ the most when added to y ?

$$
\begin{aligned}
\beta_{\mathrm{OLS}}^{\bmod }(z) & :=\arg \min _{\beta}\left\|y+z-X^{\top} \beta\right\|_{2}^{2} \\
z_{\mathrm{OLS}}^{\text {adv }} & :=\arg \max _{\|z\|_{2} \leq \gamma}\left\|\beta_{\mathrm{OLS}}-\beta_{\mathrm{OLS}}^{\bmod }(z)\right\|_{2}^{2}=\gamma v_{p}
\end{aligned}
$$

