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Prerequisites

Linear algebra (singular value decomposition)
Thresholding

Wiener filtering



Image denoising

» Linear translation-invariant estimation: Wiener filtering
» Nonlinear estimation: Thresholding in transform domain

» Nonlinear translation-invariant estimation: Convolutional neural
networks (CNNs)



Deep learning for image denoising

» Gather dataset of natural images
» Simulate noise

» Train CNN to estimate clean image minimizing mean squared error



Wiener filtering

Linear translation invariant estimator, i.e. convolutional filter
Yest := W x x = Wx

If the noise is additive and independent, at each frequency

DFT filter coefficient = IMage vanance

image variance + noise variance

Component preserved if signal energy is large with respect to noise



Convolutional neural network

Large number of convolutional filters combined with pointwise nonlinearity
f(x)=Wrr(Wi—q--- r(War(Wix)))

r(v)[i] := max {0, v[i]}



Noisy image




Wiener filtering




Wavelet block thresholding




Convolutional neural network
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Jacobian

For fixed input x, matrix J, such that

Rows can be interpreted as filters adapted to specific image
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Wiener filter

Frequency domain: Approximate projection onto low-pass 2D sinusoids
Problem: Same projection for each image

Blurs edges and other fine-scale features



Sparsity-based denoising

Sparsity-based methods implement adaptive projection:
1. Learn/design basis functions

2. Select sparse subset for each image/patch through
thresholding/optimization

3. Project on span of sparse subset

Projection onto subspace that depends on the input



SVD analysis of Jacobian

s =USVvT

Empirical observations:
» Matrix is approximately symmetric U ~ V

» Matrix is approximately low-rank

f(x) = Jyx = Zsjuj (vj, x)
J



Singular values
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Singular vectors computed from noisy image

Clean image 282

Large singular
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Small singular
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What have we learned?

Convolutional neural networks are nonlinear translation-invariant models
Analysis of the Jacobian shows that they learn to adapt to individual signals

Many of their properties are not well understood!



