
Convolutional neural networks for image denoising

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda



Prerequisites

Linear algebra (singular value decomposition)

Thresholding

Wiener filtering



Image denoising

I Linear translation-invariant estimation: Wiener filtering

I Nonlinear estimation: Thresholding in transform domain

I Nonlinear translation-invariant estimation: Convolutional neural
networks (CNNs)



Deep learning for image denoising

I Gather dataset of natural images

I Simulate noise

I Train CNN to estimate clean image minimizing mean squared error



Wiener filtering

Linear translation invariant estimator, i.e. convolutional filter

yest := w ∗ x = Wx

If the noise is additive and independent, at each frequency

DFT filter coefficient =
image variance

image variance + noise variance

Component preserved if signal energy is large with respect to noise



Convolutional neural network

Large number of convolutional filters combined with pointwise nonlinearity

f (x) = WLr(WL−1 · · · r(W2r(W1x)))

r(v)[i ] := max {0, v [i ]}



Noisy image



Wiener filtering



Wavelet block thresholding



Convolutional neural network



Comparison

Clean Noisy Wiener
filtering

Wavelet
block

thresholding
CNN



Jacobian

For fixed input x , matrix Jx such that

Jxx ≈ f (x)

Rows can be interpreted as filters adapted to specific image



Low noise

Noisy image Denoised

Pixel 1

Pixel 2

Pixel 3

Pixel 1 Pixel 2 Pixel 3



Medium noise

Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



High noise

Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



Wiener filter

Frequency domain: Approximate projection onto low-pass 2D sinusoids

Problem: Same projection for each image

Blurs edges and other fine-scale features



Sparsity-based denoising

Sparsity-based methods implement adaptive projection:

1. Learn/design basis functions

2. Select sparse subset for each image/patch through
thresholding/optimization

3. Project on span of sparse subset

Projection onto subspace that depends on the input



SVD analysis of Jacobian

Jx = U S V T

Empirical observations:

I Matrix is approximately symmetric U ≈ V

I Matrix is approximately low-rank

f (x) ≈ Jxx =
∑
j

sjuj 〈vj , x〉



Singular values

0 200 400 600 800 1000 1200 1400 1600
axis number 

0.0

0.5

1.0

1.5

2.0

2.5

3.0
si

ng
ul

ar
 v

al
ue

s



Singular vectors computed from noisy image

Clean image

Large singular
values

Small singular
values



What have we learned?

Convolutional neural networks are nonlinear translation-invariant models

Analysis of the Jacobian shows that they learn to adapt to individual signals

Many of their properties are not well understood!


