

Convexity

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Calculus (multivariate functions)

Linear algebra (norms)

Sparse regression via the lasso

Convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for any $x, y \in \mathbb{R}^n$ and any $\theta \in (0, 1)$

$$\theta f(x) + (1 - \theta) f(y) \ge f(\theta x + (1 - \theta) y)$$

Convex functions

Strictly convex functions

A function $f: \mathbb{R}^n \to \mathbb{R}$ is strictly convex if for any $x,y \in \mathbb{R}^n$ and any $\theta \in (0,1)$

$$\theta f(x) + (1 - \theta) f(y) > f(\theta x + (1 - \theta) y)$$

Strictly convex functions

Linear functions

Linear functions are convex

$$f(\theta x + (1 - \theta) y) = \theta f(x) + (1 - \theta) f(y)$$

Quadratic forms

Let A be a symmetric matrix, if

$$f(x) := x^T A x \ge 0$$
 for all x

then the quadratic form f is positive semidefinite

lf

$$f(x) := x^T Ax > 0$$
 for all x

then the quadratic form f is positive definite

Positive semidefinite quadratic forms are convex

 $\theta f(x) + (1 - \theta)f(y) - f(\theta x + (1 - \theta)y)$

$$= \theta x^{T} A x + (1 - \theta) y^{T} A y - (\theta x + (1 - \theta) y)^{T} A (\theta x + (1 - \theta) y)$$

$$= (\theta - \theta^{2}) x^{T} A x + (1 - \theta - (1 - \theta)^{2}) y^{T} A y - 2\theta (1 - \theta) x^{T} A y$$

$$= \theta (1 - \theta) x^{T} A x + \theta (1 - \theta) y^{T} A y - 2\theta (1 - \theta) x^{T} A y$$

$$= \theta (1 - \theta) (x - y)^{T} A (x - y)$$

Function is convex if quadratic form is positive semidefinite, strictly convex if it is positive definite

Positive semidefinite quadratic function

Norms are convex

For any $x, y \in \mathbb{R}^n$ and any $\theta \in (0, 1)$

$$||\theta x + (1 - \theta) y|| \le ||\theta x|| + ||(1 - \theta) y||$$

= $\theta ||x|| + (1 - \theta) ||y||$

$$\ell_0$$
 "norm" is not convex

Let
$$x := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $y := \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, for any $\theta \in (0,1)$

$$||\theta x + (1 - \theta) y||_0 = 2$$

$$\theta ||x||_0 + (1 - \theta) ||y||_0 = 1$$

Is the lasso cost function convex?

f strictly convex, g convex, $h := f + \lambda g$?

$$h(\theta x + (1 - \theta) y) = f(\theta x + (1 - \theta) y) + \lambda g(\theta x + (1 - \theta) y)$$

$$< \theta f(x) + (1 - \theta) f(y) + \lambda \theta g(x) + \lambda (1 - \theta) g(y)$$

$$= \theta h(x) + (1 - \theta) h(y)$$

Lasso cost function is convex

Sum of convex functions is convex

If at least one is strictly convex, then sum is strictly convex

Scaling by a positive factor preserves convexity

Lasso cost function is convex!

Any local minimum of a convex function is also a global minimum

Proof

Let x_{loc} be a local minimum: for all $x \in \mathbb{R}^n$ such that $||x - x_{loc}||_2 \le \gamma$

$$f(x_{loc}) \leq f(x)$$

Let x_{glob} be a global minimum

$$f\left(x_{\mathsf{glob}}\right) < f\left(x_{\mathsf{loc}}\right)$$

Proof

Choose θ so that $x_{\theta} := \theta x_{\mathsf{loc}} + (1 - \theta) x_{\mathsf{glob}}$ satisfies

$$||x_{\theta} - x_{\mathsf{loc}}||_2 \le \gamma$$

then

$$\begin{split} f\left(x_{\text{loc}}\right) &\leq f\left(x_{\theta}\right) \\ &= f\left(\theta x_{\text{loc}} + \left(1 - \theta\right) x_{\text{glob}}\right) \\ &\leq \theta f\left(x_{\text{loc}}\right) + \left(1 - \theta\right) f\left(x_{\text{glob}}\right) \quad \text{by convexity of } f \\ &< f\left(x_{\text{loc}}\right) \quad \text{because } f\left(x_{\text{glob}}\right) < f\left(x_{\text{loc}}\right) \end{split}$$

Strictly convex functions

Strictly convex functions have at most one global minimum

Proof: Assume two minima exist at $x \neq y$ with value v_{\min}

$$f(0.5x + 0.5y) < 0.5f(x) + 0.5f(y)$$

= v_{min}

What have we learned?

Definition of convexity

The lasso function is convex

The local minima of convex functions are global minima (and are unique for strictly convex functions)