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Prerequisites

Calculus (multivariate functions)

Linear algebra (norms)

Sparse regression via the lasso



Convex functions

A function f : Rn → R is convex if for any x , y ∈ Rn and any θ ∈ (0, 1)

θf (x) + (1− θ) f (y) ≥ f (θx + (1− θ) y)
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Strictly convex functions

A function f : Rn → R is strictly convex if for any x , y ∈ Rn and
any θ ∈ (0, 1)

θf (x) + (1− θ) f (y)>f (θx + (1− θ) y)
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Linear functions

Linear functions are convex

f (θx + (1− θ) y) = θf (x) + (1− θ) f (y)



Quadratic forms

Let A be a symmetric matrix, if

f (x) := xTAx ≥ 0 for all x

then the quadratic form f is positive semidefinite

If

f (x) := xTAx>0 for all x

then the quadratic form f is positive definite



Positive semidefinite quadratic forms are convex

θf (x) + (1− θ)f (y)− f (θx + (1− θ) y)
= θxTAx + (1− θ)yTAy − (θx + (1− θ) y)T A (θx + (1− θ) y)
= (θ − θ2)xTAx + (1− θ − (1− θ)2)yTAy − 2θ(1− θ)xTAy
= θ(1− θ)xTAx + θ(1− θ)yTAy − 2θ(1− θ)xTAy
= θ(1− θ)(x − y)TA(x − y)

Function is convex if quadratic form is positive semidefinite, strictly convex
if it is positive definite



Positive semidefinite quadratic function



Norms are convex

For any x , y ∈ Rn and any θ ∈ (0, 1)

||θx + (1− θ) y || ≤ ||θx ||+ ||(1− θ) y ||
= θ ||x ||+ (1− θ) ||y ||



`0 “norm" is not convex

Let x := ( 1
0 ) and y := ( 0

1 ), for any θ ∈ (0, 1)

||θx + (1− θ) y ||0 = 2

θ ||x ||0 + (1− θ) ||y ||0 = 1



Is the lasso cost function convex?

f strictly convex, g convex, h := f + λg?

h(θx + (1− θ) y) = f (θx + (1− θ) y) + λg(θx + (1− θ) y)
< θf (x) + (1− θ) f (y) + λθg(x) + λ (1− θ) g(y)
= θh(x) + (1− θ) h(y)



Lasso cost function is convex

Sum of convex functions is convex

If at least one is strictly convex, then sum is strictly convex

Scaling by a positive factor preserves convexity

Lasso cost function is convex!



Local minima are global

Any local minimum of a convex function is also a global minimum



Proof

Let xloc be a local minimum: for all x ∈ Rn such that ||x − xloc||2 ≤ γ

f (xloc) ≤ f (x)

Let xglob be a global minimum

f (xglob) < f (xloc)



Proof

Choose θ so that xθ := θxloc + (1− θ) xglob satisfies

||xθ − xloc||2 ≤ γ

then

f (xloc) ≤ f (xθ)

= f (θxloc + (1− θ) xglob)
≤ θf (xloc) + (1− θ) f (xglob) by convexity of f
< f (xloc) because f (xglob) < f (xloc)



Strictly convex functions

Strictly convex functions have at most one global minimum

Proof: Assume two minima exist at x 6= y with value vmin

f (0.5x + 0.5y) < 0.5f (x) + 0.5f (y)
= vmin



What have we learned?

Definition of convexity

The lasso function is convex

The local minima of convex functions are global minima (and are unique
for strictly convex functions)


