COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Principal component analysis (blended lecture)

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science https://cims.nyu.edu/~cfgranda/pages/MTDS_spring20/index.html

Carlos Fernandez-Granda

The spectral theorem

PCA of temperature data

Gaussian vectors in high dimensions

Cities in Canada

Cities in Canada

Sample covariance matrix:

$$
\Sigma_{X}=\left[\begin{array}{cc}
524.9 & -59.8 \\
-59.8 & 53.7
\end{array}\right]
$$

Projection onto a fixed direction

Projection onto a fixed direction

Component in selected direction

Projection onto a fixed direction

$$
\sigma_{X_{v}}^{2}=v^{T} \Sigma_{X} v
$$

$f(v):=v^{\top} \Sigma_{x} v$ for $\|v\|_{2}=1$

$f(v):=v^{T} \Sigma_{X} v$ for $\|v\|_{2}=1$

Spectral theorem

If $A \in \mathbb{R}^{d \times d}$ is symmetric, then it has an eigendecomposition

$$
A=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
& & \cdots & \\
0 & 0 & \cdots & \lambda_{d}
\end{array}\right]\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{d}
\end{array}\right]^{T},
$$

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ are real
Eigenvectors $u_{1}, u_{2}, \ldots, u_{n}$ are real and orthogonal

Spectral theorem

$$
\begin{aligned}
& \lambda_{1}=\max _{\|x\|_{2}=1} x^{T} A x \\
& u_{1}=\arg \max _{\|x\|_{2}=1} x^{T} A x \\
& \lambda_{k}=\max _{\|x\|_{2}=1, x \perp u_{1}, \ldots, u_{k-1}} x^{T} A x, \quad 2 \leq k \leq d \\
& u_{k}=\arg \max _{\|x\|_{2}=1, x \perp u_{1}, \ldots, u_{k-1}} x^{T} A x, \quad 2 \leq k \leq d
\end{aligned}
$$

Gain some mathematical intuition about spectral theorem

Quadratic form

Function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by

$$
f(x):=x^{T} A x
$$

where A is a $d \times d$ symmetric matrix
Generalization of quadratic functions to multiple dimensions
$f(v):=v^{\top} \Sigma_{X} v$

$f(v):=v^{T} \Sigma_{X} v$ for $\|v\|_{2}=1$

Can this point be a maximum?

Red arrow $=$ gradient of quadratic form
Green line $=$ gradient of $g(x):=x^{\top} x$

Where is the maximum?

Red arrow $=$ gradient of quadratic form

Maximum satisfies $A x=\lambda x$!

Red arrow $=$ gradient of quadratic form
Green line $=$ gradient of $g(x):=x^{\top} x$

Some unresolved issues

Are we sure there is a maximum?

What about other local maxima?

What about minimum?

The spectral theorem

PCA of temperature data

Gaussian vectors in high dimensions

Dataset

- Hourly temperatures measured at US weather stations in 2015
- Number of features (stations): 134
- Number of examples: $24 \times 365=8760$

Sample covariance matrix

The sample covariance matrix of $X:=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is

$$
\begin{aligned}
\Sigma_{X} & :=\frac{1}{n} \sum_{i=1}^{n} c\left(x_{i}\right) c\left(x_{i}\right)^{T} \\
& =\left[\begin{array}{cccc}
\sigma_{X[1]}^{2} & \sigma_{X[1], X[2]} & \cdots & \sigma_{X[1], X[d]} \\
\sigma_{X[1], X[2]} & \sigma_{X[2]}^{2} & \cdots & \sigma_{X[2], X[d]} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{X[1], X[d]} & \sigma_{X[2], X[d]} & \cdots & \sigma_{X[d]}^{2}
\end{array}\right]
\end{aligned}
$$

$c\left(x_{i}\right):=x_{i}-\mu_{X}$
$X[j]:=\left\{x_{1}[j], \ldots, x_{n}[j]\right\}$
$\sigma_{X[i]}^{2}$ is the sample variance of $X[i]$
$\sigma_{X[i], X[j]}$ is the sample covariance of $X[i]$ and $X[j]$

Sample covariance matrix

	Tucson, AZ	Hilo, HI	Durham, NC	Ithaca, NY
Tucson, AZ				
Hilo, HI				
Durham, NC				
Ithaca, NY				

What do you expect?

Sample covariance matrix

	Tucson, AZ	Hilo, HI	Durham, NC	Ithaca, NY
Tucson, AZ	78.6	14.7	54.8	65.0
Hilo, HI	14.7	8.4	9.5	11.8
Durham, NC	54.8	9.5	89.4	97.4
Ithaca, NY	65.0	11.8	97.4	137.3

Sample covariance matrix

	Tucson, AZ	Hilo, HI	Durham, NC	Ithaca, NY
Tucson, AZ	78.6	14.7	54.8	65.0
Hilo, HI	14.7	8.4	9.5	11.8
Durham, NC	54.8	9.5	89.4	97.4
Ithaca, NY	65.0	11.8	97.4	137.3

How can we normalize to evaluate whether correlation is high or not?

Correlation coefficient

Pearson correlation coefficient of \tilde{x} and \tilde{y}

$$
\rho_{\tilde{x}, \tilde{y}}:=\frac{\operatorname{Cov}(\tilde{x}, \tilde{y})}{\sigma_{\tilde{x}} \sigma_{\tilde{y}}}
$$

Covariance between $\tilde{x} / \sigma_{\tilde{x}}$ and $\tilde{y} / \sigma_{\tilde{y}}$
By the Cauchy-Schwarz inequality

$$
|\operatorname{Cov}(\tilde{x}, \tilde{y})| \leq \sigma_{\tilde{x}} \sigma_{\tilde{y}} \quad \text { and } \quad-1 \leq \rho_{\tilde{x}, \tilde{y}} \leq 1
$$

Same holds for sample statistics

Sample correlation matrix

	Tucson, AZ	Hilo, HI	Durham, NC	Ithaca, NY
Tucson, AZ	1	0.57	0.65	0.63
Hilo, HI	0.57	1	0.35	0.35
Durham, NC	0.65	0.35	1	0.88
Ithaca, NY	0.63	0.35	0.88	1

Principal components

For dataset X containing $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$

1. Compute sample covariance matrix Σ_{X}
2. Eigendecomposition of Σ_{X} yields principal directions u_{1}, \ldots, u_{d}
3. Center the data and compute principal components

$$
p c_{i}[j]:=u_{j}^{T} c\left(x_{i}\right), \quad 1 \leq i \leq n, 1 \leq j \leq d
$$

where $c\left(x_{i}\right):=x_{i}-\mu_{X}$

Principal directions

1. Top 5 coefficients:

Jamestown ND (0.12), Goodridge MN (0.12), Northgate ND (0.12)
Bottom 5 coefficients:
Mauna Loa HI (0.01), Hilo HI (0.01), Bodega CA (0.12)

Principal directions

1. Top 5 coefficients:

Jamestown ND (0.12), Goodridge MN (0.12), Northgate ND (0.12)
Bottom 5 coefficients:
Mauna Loa HI (0.01), Hilo HI (0.01), Bodega CA (0.12)
2. Top 5 coefficients:

Elkins WV (0.13), Ithaca NY (0.12), Crossville TN (0.12)
Bottom 5 coefficients:
Merced CA (-0.14), Riley OR (-0.13), Redding CA (-0.13)

Principal directions

1. Top 5 coefficients:

Jamestown ND (0.12), Goodridge MN (0.12), Northgate ND (0.12)
Bottom 5 coefficients:
Mauna Loa HI (0.01), Hilo HI (0.01), Bodega CA (0.12)
2. Top 5 coefficients:

Elkins WV (0.13), Ithaca NY (0.12), Crossville TN (0.12)
Bottom 5 coefficients:
Merced CA (-0.14), Riley OR (-0.13), Redding CA (-0.13)
3. Top 5 coefficients:

Goodridge MN (0.2), Jamestown ND (0.2), Aberdeen SD (0.18)
Bottom 5 coefficients:
Mauna Loa HI (0.01), Hilo HI (0.01), Bodega CA (0.12)

Principal directions

Principal directions

Variance of principal components

How do we compute it?

Variance of principal components

How do we compute it?

The spectral theorem

PCA of temperature data

Gaussian vectors in high dimensions

Gaussian random vector

A Gaussian random vector \tilde{x} is a random vector with joint pdf

$$
f_{\tilde{x}}(x)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

where $\mu \in \mathbb{R}^{d}$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ the covariance matrix
$\Sigma \in \mathbb{R}^{d \times d}$ is positive definite (positive eigenvalues)

Contour surfaces

Contour surfaces

Gaussian (iid samples) in 2D

Gaussian (iid samples) in 2D

What do you expect in higher dimensions?
What statistic could be useful?
ℓ_{2} norm of d-dimensional iid standard Gaussian vector \tilde{w}

$$
\begin{aligned}
\operatorname{Var}\left(\|\tilde{w}\|_{2}^{2}\right) & =\mathrm{E}\left[\left(\|\tilde{w}\|_{2}^{2}\right)^{2}\right]-\mathrm{E}^{2}\left(\|\tilde{w}\|_{2}^{2}\right) \\
\mathrm{E}\left(\|\tilde{w}\|_{2}^{2}\right) & = \\
\mathrm{E}\left[\left(\|\tilde{w}\|_{2}^{2}\right)^{2}\right] & =
\end{aligned}
$$

How does the std scale with respect to the mean?
ℓ_{2} norm of d-dimensional iid standard Gaussian vector \tilde{w}

$$
\begin{aligned}
\operatorname{Var}\left(\|\tilde{w}\|_{2}^{2}\right) & =\mathrm{E}\left[\left(\|\tilde{w}\|_{2}^{2}\right)^{2}\right]-\mathrm{E}^{2}\left(\|\tilde{w}\|_{2}^{2}\right)=2 d \\
\mathrm{E}\left(\|\tilde{w}\|_{2}^{2}\right) & =\mathrm{E}\left(\sum_{i=1}^{d} \tilde{w}[i]^{2}\right)=d \\
\mathrm{E}\left[\left(\|\tilde{w}\|_{2}^{2}\right)^{2}\right] & =\mathrm{E}\left[\left(\sum_{i=1}^{d} \tilde{w}[i]^{2}\right)^{2}\right] \\
& =\sum_{i=1}^{d} \mathrm{E}\left(\tilde{w}[i]^{4}\right)+2 \sum_{i=1}^{d-1} \sum_{j=i+1}^{d} \mathrm{E}\left(\tilde{w}[i]^{2}\right) \mathrm{E}\left(\tilde{w}[j]^{2}\right)=d(d+2)
\end{aligned}
$$

How does the std scale with respect to the mean? $1 / \sqrt{d}$

ℓ_{2} norm of d-dimensional iid standard Gaussian vector

