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The Frequency Domain

In these notes we describe a fundamental tool in signal processing: frequency representations.
Section 1 introduces the Fourier series, which is a frequency representation for continuous functions
defined on an interval. Section 2 is dedicated to the celebrated sampling theorem, which is a
pillar of modern signal processing. Section 3 describes the discrete Fourier transform, which is
the discrete counterpart of the Fourier series. Section 4, 6 and 5 discuss the Fourier series, the
sampling theorem and the discrete Fourier transform in multiple dimensions.

1 The Fourier series

Structured objects such as images, audio sequences, and videos are often modeled as functions
of time or space known as signals. In order to analyze and process signals, it is useful to rep-
resent them as linear combinations of simpler functions. Let us consider the vector space of
complex-valued square-integrable functions defined on an interval [a, b] ⊂ R with the standard
inner product,

〈x, y〉 :=

∫ b

a

x (t) y (t) dt. (1)

To express a function x : [a, b]→ R in terms of an orthonormal basis of functions g1, g2 . . . , each
defined from [a, b] to R all we need to do is compute the coefficients

c[j] := 〈x, gj〉 . (2)

Indeed, by the properties of orthonormal bases,

x =
∑
j

c[j]gj. (3)

Signals often have periodic structure due to repeating patterns. In this section, we describe
a representation that decomposes a signal into periodic components that oscillate at different
frequencies. This often uncovers structure that is difficult to interpret or manipulate otherwise.

The frequency of a periodic signal is the inverse of its period. By far the most popular basis
functions with fixed frequencies are sinusoids. Sinusoids are smooth oscillating functions of the
form

a cos(2πft+ θ), (4)

where a ∈ R is the amplitude, f ∈ R the frequency, t is the time index, and θ ∈ [0, 2π] is the phase.
A sinusoid with frequency f is periodic with period T := 1/f . Expressing a signal in terms of the
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Figure 1: Complex sinusoid (dark red) as a function of time. The real part (green) is a cosine
function. The imaginary part (blue) is a sine function.

cosine (or sine) function as in Eq. (4) is not very convenient. The function depends nonlinearly on
the phase θ, so there are infinite possible basis functions associated to each frequency. An elegant
solution is to use complex-valued sinusoids instead.

Definition 1.1 (Complex sinusoid). The complex sinusoid with frequency f ∈ R is given by

exp(i2πft) := cos(2πft) + i sin(2πft). (5)

Figure 1 shows a complex sinusoid, along with its real and imaginary parts. Note that com-
plex sinusoids can have negative frequencies. This just changes their imaginary component to
− sin(2πft), instead of sin(2πft). Any real sinusoid with frequency f can be represented as the
sum of two complex sinusoids with frequencies f and −f respectively:

cos(2πft+ θ) =
exp(i2πft+ iθ) + exp(−i2πft− iθ)

2
(6)

=
exp(iθ)

2
exp(i2πft) +

exp(−iθ)
2

exp(−i2πft). (7)

Crucially, the phase is now encoded in the complex amplitude of the sinusoid. As a result, from a
linear-algebra perspective, the subspace spanned by the two complex sinusoids with frequencies f
and −f contains all possible real sinusoids with frequency f . In particular, if we add two sinusoids
with the same frequency, but different amplitudes and phases, the result is a sinusoid with that
frequency. It therefore makes sense to interpret sinusoids as basis functions, each representing a
particular frequency.

If we are interested in obtaining a representation for functions restricted to an interval, working
with orthogonal basis functions makes life much easier. The following lemma shows that for any
fixed positive T ∈ R, complex sinusoids with frequency equal to k/T– where k is an integer– are
all orthogonal.

2



Lemma 1.2 (Orthogonality of complex sinusoids). The family of complex sinusoids with integer
frequencies

φk (t) := exp

(
i2πkt

T

)
, k ∈ Z, (8)

is an orthogonal set of functions on any interval of the form [0, T ], where T ∈ R and T > 0.

Proof. We have

〈φk, φj〉 =

∫ a+T

a

φk (t)φj (t) dt (9)

=

∫ a+T

a

exp

(
i2π (k − j) t

T

)
dt (10)

=
T

i2π (k − j)

(
exp

(
i2π (k − j) (a+ T )

T

)
− exp

(
i2π (k − j) a

T

))
(11)

= 0 (12)

as long as j 6= k.

In words, this family includes all complex sinusoids with positive and negative frequencies whose
period is an integer fraction of the length of the interval. The Fourier series is a decomposition of
signals as a sum of these basis functions.

Definition 1.3 (Fourier series). The Fourier series coefficients of a function x ∈ L2 [0, T ], T ∈ R,
T > 0, are given by

x̂[k] := 〈x, φk〉 =

∫ a+T

a

x(t) exp

(
−i2πkt

T

)
dt. (13)

The Fourier series of order kc is defined as

Fkc {x} :=
1

T

kc∑
k=−kc

x̂[k]φk. (14)

The Fourier series of a signal x is defined as limkc→∞Fkc {x}.

The basis functions have norm
√
T . We can interpret the Fourier series of order kc as a projection

of the function onto the span of the complex sinusoids with frequencies up to kc/T . By Lemma 1.2
the sinusoids scaled by 1/

√
T are orthonormal so

Pspan({φ−kc ,φ−kc+1,...,φkc}) x =
kc∑

k=−kc

〈
x,

1√
T
φk

〉
1√
T
φk (15)

= Fkc {x} . (16)

Figure 3 shows the Fourier series coefficients of the electrocardiogram signal in Figure 2.

For real signals, we can express the Fourier series in terms of real sinusoids, instead of complex
exponentials.
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Data Features used for diagnostics
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Figure 2: The left image shows an electrocardiogram (ECG) with a duration of 8 s. The top right
image shows the features that are relevant for medical diagnostics in a typical ECG.

Lemma 1.4. Let x̂ = αk exp (iξk) be the Fourier series coefficients of a real-valued function
x ∈ L2 [0, T ], T ∈ R, T > 0, expressed in polar form; αk > 0 is the magnitude and ξk ∈ [0, 2π] is
the phase. The Fourier series of order kc of x is equal to

Fkc {x} = α0 +
1

T

kc∑
k=0

2αk cos

(
2πkt

T
+ ξk

)
. (17)

Proof. For k 6= 0, we have

x̂[−k] :=

∫ a+T

a

x(t) exp

(
i2πkt

T

)
dt (18)

=

∫ a+T

a

x(t) exp

(−i2πkt
T

)
dt because x is real valued (19)

= x̂[k] (20)

= αk exp (−iξk) . (21)

As a result, we can combine the components in the Fourier series corresponding to frequencies of
k and −k,

x̂[k]φk + x̂[−k]φ−k = αk exp (iξk) exp

(
i2πkt

T

)
+ αk exp (−iξk) exp

(
−i2πkt

T

)
(22)

= αk

(
exp

(
i2πkt

T
+ ξk

)
+ exp

(
−i2πkt

T
− ξk

))
(23)

= 2αk cos

(
2πkt

T
+ ξk

)
. (24)
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Figure 3: Magnitude (left) and phase (right) of the Fourier coefficients of the ECG data in the
left image of Figure 2.

Figure 4 shows the partial Fourier series of the signal for different cut-off frequencies kc, together
with the corresponding real sinusoidal components in Eq. (17). As kc increases, the approximation
improves. Remarkably, if the function is integrable, the approximation eventually converges to
the function. We omit the proof of this result, which is beyond the scope of these notes.

Theorem 1.5 (Convergence of Fourier series). For any function x ∈ L2[0, T ), where T ∈ R and
T > 0,

lim
k→∞
||x−Fk {x}||L2 = 0. (25)

By Theorem 1.5 we can represent any square-integrable function defined on an interval by using its
Fourier coefficients, which are often known as the spectrum of the function. It is worth noting that
one can generalize this representation to functions defined on the whole real line by considering
real-valued frequencies, which yields the Fourier transform.

Example 1.6 (Filtering an electrocardiogram). Electrocardiography is a method to record heart
activity by using electrodes to measure electrical changes on the skin. Figure 2 also shows the
standard features used by doctors to perform diagnostics using ECGs. Unfortunately, the data
contains other periodic patterns that make it difficult to visualize these features. Decomposing the
signal in components with different frequencies is very useful to remove such perturbations. The
low-frequency components of the ECG signal in Figure 2 produce significant baseline wandering,
which are slowly-varying fluctuations typically caused by motion of the recording apparatus or
the patient, or by breathing. In addition, the Fourier series coefficients of the data, shown in
Figure 3 reveal a strong component at 50 Hz. This is caused by interference from the power grid,
which transmits electricity exactly at that frequency. In order to use the electrocardiogram for
diagnostics, we would like to eliminate these effects, since they are not associated to heart activity.
We can achieve this by removing the corresponding Fourier components from the Fourier series
representation, an approach known as filtering in the signal processing literature.

Let x denote the electrocardiogram signal, and let x̂ denote its Fourier series coefficients of order
kmax. A reasonable of kmax would correspond to a maximum frequency of about 60 Hz, since

The image is borrowed from https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
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Figure 4: The top image shows the real sinusoidal components of the Fourier series of the ECG
signal from Figure 2, expressed as in Eq. (17). The third image shows zoomed components
corresponding to higher frequencies. The second and fourth image show the Fourier series of the
signal truncated at different frequencies.
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beyond that frequency the Fourier components have negligible energy (see Figure 5). To get rid
of baseline wandering we remove the low-frequency components of the signal. This is known as
high-pass filtering, because it preserves the frequencies that are higher than a certain threshold
kthresh. The filtered signal is given by

xhigh-pass :=
1

T

−kthresh∑
k=−kmax

x̂[k]φk +
1

T

kmax∑
k=kthresh

x̂[k]φk. (26)

The second and third rows of Figure 5 show the resulting signal, which is indeed free from slowly-
varying fluctuations. However, it still contains the interference from the power grid. In order to
address this, we eliminate a few Fourier components between kband-ini and kband-end, centered at
50 Hz. This is called band-stop filtering, because it removes a band of frequencies. The filtered
signal is therefore equal to

xfiltered :=
1

T

−kband-end∑
k=−kmax

x̂[k]φk +
1

T

−kthresh∑
k=−kband-ini

x̂[k]φk +
1

T

kband-ini∑
k=kthresh

x̂[k]φk +
1

T

kmax∑
k=kband-end

x̂[k]φk. (27)

Figure 5 shows that the final result, which is indeed free from interference and therefore highlights
the features relevant to heart activity more effectively. 4

2 Sampling bandlimited functions

Signals often model continuous objects, such as sound, or images, which need to be measured in
order to be stored and processed. A natural way to measure signals is to sample them, which
means recording their value at certain fixed locations. In this section, we consider the problem
of sampling continuous signals that consist of a finite number of sinusoidal components. Under
certain conditions it is possible to reconstruct such signals exactly from the samples. At a first
glance, this may sound counterintuitive because the functions are continuous. However, they also
have a finite parametrization in terms of their Fourier coefficients, and this parametrization can
be recovered from a finite number of samples.

We begin by considering a single complex sinusoid φk with frequency k/T defined on an interval
of length T , which we assume to be [0, T ) without loss of generality. The sinusoid is sampled on
a uniform grid with N equispaced points that divide an interval of length T into N segments of

length T/N : φk
(

0
N

)
, φk

(
T
N

)
, φk

(
2T
N

)
, . . . , φk

(
(N−1)T

N

)
. We immediately encounter a problem:

these samples are exactly the same as if the frequency of the sinusoid were instead k+pN
T

for any
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Figure 5: The ECG data from Example 1.6 (top row) is filtered to first remove low-frequency
components (second and third rows) and then power-line interference at 50 Hz (bottom row). The
left column displays the signals in the time domain. The right columns shows the magnitude of
the corresponding Fourier series coefficients.
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Figure 6: Discrete complex sinusoids ψ2 (left) and ψ3 (right) for N = 10, displayed in red. The
real and imaginary parts are shown in green and blue respectively.

integer p:

φk

(
jT

N

)
= exp

(
i2πkjT

NT

)
(28)

= exp

(
i2πkj

N

)
(29)

= exp

(
i2π(k + pN)j

N

)
(30)

= φk+pN

(
jT

N

)
. (31)

It is impossible to distinguish complex sinusoids with frequencies k+pN
T

from these samples. How-
ever, frequencies corresponding to values of k that are restricted to a fixed interval of length N
are distinguishable. The vector of samples corresponding to each of these values of k can be
interpreted as a discrete sinusoid.

Definition 2.1 (Discrete complex sinusoids). The discrete complex sinusoid ψk ∈ CN with integer
frequency k is defined as

ψk [j] := exp

(
i2πkj

N

)
, 0 ≤ j, k ≤ N − 1. (32)

Figure 6 shows ψ2 and ψ3 for N := 10.

Discrete complex sinusoids form an orthonormal basis of CN if we scale them by 1/
√
N .

Lemma 2.2 (Orthonormal sinusoidal basis). The discrete complex exponentials 1√
N
ψ0, . . . , 1√

N
ψN−1

form an orthonormal basis of CN .
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Proof. Each vector has `2 norm equal to
√
N ,

||ψk||22 =
N−1∑
j=0

|ψk [j]|2 (33)

=
N−1∑
j=0

1 (34)

= N, (35)

and

〈ψk, ψl〉 =
N−1∑
j=0

ψk [j]ψl [j] (36)

=
N−1∑
j=0

exp

(
i2π (k − l) j

N

)
(37)

=
1− exp

(
i2π(k−l)N

N

)
1− exp

(
i2π(k−l)

N

) (38)

= 0, (39)

if k 6= l. Since there are N vectors in the set and they are linearly independent, they form a basis
of CN .

We now consider a class of signals which can be represented as a linear combination of continuous
sinusoids with frequencies between −kc/T and kc/T . Intuitively, this represents signals that have
limited fluctuations, since they do not contain components beyond a certain cut-off frequency
kc/T .

Definition 2.3 (Bandlimited signal). A signal is bandlimited with a cut-off frequency kc/T if it
is equal to its Fourier series representation of order kc, i.e.

x(t) =
1

T

kc∑
k=−kc

x̂[k] exp

(
i2πkt

T

)
. (40)

Bandlimited signals depend on a finite number of parameters (their Fourier coefficients). It is
therefore not too crazy to imagine that they can be recovered from a finite number of samples.
Let us consider a uniform sampling pattern with N sampling locations that divide an interval of
length T into N segments of length T/N . For simplicity, we assume that the interval is [0, T )

without loss of generality. The samples equal x
(

0
N

)
, x
(
T
N

)
, x
(

2T
N

)
, . . . , x

(
(N−1)T

N

)
. The Fourier

series of the bandlimited signal enables us to write the vector of samples as a linear combination
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of discrete complex sinusoids weighted by the Fourier coefficients of the signal:

x

(
jT

N

)
=

1

T

kc∑
k=−kc

x̂k exp

(
i2πkjT

NT

)
(41)

=
1

T

kc∑
k=−kc

x̂k exp

(
i2πkj

N

)
(42)

=
1

T

kc∑
k=−kc

x̂kψk[j], 0 ≤ j ≤ N − 1. (43)

If we define x[N ] as the vector containing the N samples, we have

x[N ] =
1

T

kc∑
k=−kc

x̂kψk. (44)

Here it will be possible to recover the coefficients as long as (1) the number of entries in x[N ] N
is greater or equal to the number of coefficients 2kc + 1, and (2) if ψ−kc , ψ−kc+1, . . . , ψkc−1, ψkc
are linearly independent. Recall that for any j, ψj−kc = ψj−kc+N = ψkc+1+j, so ψ−kc , ψ−kc+1, . . . ,
ψ−1 are equal to ψkc+1, ψkc+2, . . . , ψN−1 respectively. As a result, ψ−kc , ψ−kc+1, . . . , ψkc−1, ψkc are
equal to ψ0, ψ1, . . . , ψN−1 (after reordering), which are linearly independent (in fact orthogonal)
by Lemma 5.2. This is the core idea behind the celebrated sampling theorem for bandlimited
signals.

Theorem 2.4 (Nyquist-Shannon-Kotelnikov sampling theorem). Any bandlimited signal x ∈
L2[0, T ), T > 0, with cut-off frequency kc/T can be recovered exactly from N uniformly spaced
samples x (0), x (T/N), . . . , x (T − T/N) as long as

N ≥ 2kc + 1, (45)

where 2kc + 1 is known as the Nyquist rate. The Fourier series coefficients x̂ can be recovered
from the vector of samples x[N ] as follows

x̂k =
T

N

〈
x[N ], ψk

〉
, (46)

where ψk is the discrete complex exponential with frequency k defined in Lemma (5.2).

Proof. For simplicity, assume N = 2kc + 1. If N > 2kc + 1 the argument is essentially the same.
Because ψk = ψk+N , the set of N vectors 1√

N
ψ−kc , . . . , 1√

N
ψkc is equal to the set 1√

N
ψ0, . . . ,

1√
N
ψN−1. By Lemma 5.2 all these vectors are orthonormal so Eq. (44) implies

T

N

〈
x[N ], ψk

〉
=
T

N

〈
1

T

kc∑
m=−kc

x̂mψm, ψk

〉
(47)

=
kc∑

m=−kc
x̂m

〈
1√
N
ψm,

1√
N
ψk

〉
(48)

= x̂k. (49)
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The sampling theorem is very useful in audio processing. It turns out that the range of frequencies
that human beings can hear is from 20 Hz to 20 kHz (i.e. if we fix T=1s, then kc ≈ 2 104). The
sampling theorem therefore dictates that audio should be sampled at a rate of at least 40 kHz
(N ≥ 4 104). Typical rates used in practice are 44.1 kHz (CD), 48 kHz, 88.2 kHz, or 96 kHz.

In practice, signals are never exactly bandlimited. It is therefore very important to understand
what happens if we sample a signal that is not bandlimited and try to reconstruct it under the
assumption that it is. In general, from N samples, we can only hope to estimate the first 2kc + 1
Fourier coefficients, where kc is such that N := 2kc + 1. The following lemma establishes that,
unless the signal is exactly bandlimited with cut-off frequency kc/T , the estimated Fourier coeffi-
cients are not equal to the true coefficients because there is additive interference from coefficients
corresponding to higher frequencies. This phenomenon is known as aliasing.

Lemma 2.5 (Aliasing). Let x be a defined on [0, T ), T > 0, and let x[N ] be a vector of N samples
of x at 0, T/N , 2T/N , . . .T − T/N . The vector

x̂rec[k] :=
T

N

〈
x[N ], ψk

〉
, −ksamp ≤ k ≤ ksamp, (50)

denotes the estimate of the kth Fourier coefficient of x computed under the assumption that the
signal is bandlimited with a cut-off frequency of ksamp/T , where N = 2ksamp + 1. We have

x̂rec[k] =
∑

{(m−k) modN=0}
x̂[m], (51)

where x̂ denotes the true Fourier coefficients of x.

Proof. We denote the true cut-off frequency of x, which can be arbitrarily large by ktrue/T (the
argument can be extended to non-bandlimited funcions). We have

x̂rec[k] =
T

N

〈
x[N ], ψk

〉
(52)

=
T

N

〈
1

T

ktrue∑
m=−ktrue

x̂[m] exp

(
i2πmjT

NT

)
, ψk

〉
(53)

=
1

N

ktrue∑
m=−ktrue

x̂[m] 〈ψm, ψk〉 (54)

=
∑

{(m−k) modN=0}
x̂[m]. (55)

The reason for aliasing is that samples from a sinusoid with frequency m/T are identical to the
samples from a sinusoid with frequency k/T = (m mod N)/T , where N is the number of samples.
This is illustrated in the following example and Figure 7. The sampling theorem establishes that
if the only sinusoidal components present in a signal all have frequencies less than the Nyquist
rate, then there is no possible confusion.
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Figure 7: Illustration of aliasing (top row) and perfect recovery (bottom row) of a real sinusoid from
equispaced samples, as described in Example 2.6. The left column shows the samples, the original
signal and the recovered signal in the time domain. The right column shows the corresponding
Fourier coefficients.
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Example 2.6 (Sampling a real sinusoid). Let us consider a real sinusoid with frequency equal to
4 Hz

x(t) := cos(8πt) (56)

= 0.5 exp(−i2π4t) + 0.5 exp(i2π4t) (57)

measured over one second, i.e. T = 1 s. The Fourier coefficients of the original signal are all zero
except for x̂[−4] = 0.5 and x̂[4] = 0.5, so the signal is bandlimited with cut-off frequency kc := 4.
If the number of samples N is larger than 2kc+1 = 9 then by Theorem 6.2 the Fourier coefficients,
and hence the signal, can be reconstructed perfectly, as shown in Figure 7 for N = 10.

To illustrate what happens if N < 2kc + 1 let us assume N = 5. In that case we can only hope to
recover 5 Fourier coefficients: k ∈ {−2,−1, 0, 1, 2}. Applying Lemma 2.5, the Fourier coefficients
corresponding to k ∈ {−2, 0, 2} will be estimated to equal zero because (4 − k) mod 5 6= 0 and
(−4−k) mod 5 6= 0 for k = −2, 0, 2. For k = −1 we have (4−(−1)) modN = 0 so the corresponding
estimated coefficient x̂rec[−1] equals x̂4 = 0.5. Similarly, (−4 − 1) modN = 0 so x̂rec[1] equals
x̂[−4] = 0.5. The samples are consistent with a real sinusoid with cut-off frequency 1 Hz, as
shown in Figure 7. 4

Example 2.7 (Sampling an electrocardiogram). The ECG signal from Example 1.6 is only ap-
proximately bandlimited. Its approximate cut-off frequency is roughly above 50 Hz, where there
is a significant contribution from power-line interference. In this example, we have T = 8 s, so
50 Hz corresponds to kc = 50/(1/T ) = 400. By Theorem 6.2 the number of samples should be
at least 801 to avoid significant aliasing. Figure 8 shows that for N = 1, 000 the aliasing is in-
deed almost imperceptible. In contrast, if N = 625 the aliasing is evident in both the time and
the frequency domain. In particular the frequency component at k = 400 (corresponding to the
power-line interference at 50 Hz) shows up at k = ±225, which corresponds to 28.125 Hz. This
follows from Lemma 2.5 because (400− (−225)) mod 625 = 0 and (−400− 225) mod 625 = 0. 4

3 The discrete Fourier transform

The discrete Fourier transform is a change of basis that expresses a finite-dimensional vector in
terms of discrete complex sinusoids. It is the discrete counterpart of the Fourier series.

Definition 3.1 (Discrete Fourier transform). The discrete Fourier transform (DFT) of a vector
x ∈ CN is given by

x̂ :=



1 1 1 · · · 1

1 exp
(
− i2π

N

)
exp

(
− i2π2

N

)
· · · exp

(
− i2π(N−1)

N

)
1 exp

(
− i2π2

N

)
exp

(
− i2π4

N

)
· · · exp

(
− i2π2(N−1)

N

)
· · · · · · · · · · · · · · ·
1 exp

(
− i2π(N−1)

N

)
exp

(
− i2π2(N−1)

N

)
· · · exp

(
− i2π(N−1)2

N

)


x = F[N ]x. (58)

In terms of the discrete complex sinusoids in Definition 2.1,

x̂ [k] = 〈x, ψk〉 , 0 ≤ k ≤ N − 1. (59)
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Figure 8: Effect of different sampling rates on the recovery of the ECG data from Example 1.6.
The left column shows the samples, the original signal and the recovered signal in the time domain.
The right column shows the corresponding Fourier coefficients. As explained in Example 2.7, if the
sampling rate is not sufficiently high, there is significant aliasing (top row). This can be mitigated
by increasing the rate (bottom row).
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The inverse DFT of a vector ŷ ∈ CN equals

y =
1

N
F ∗[N ]ŷ. (60)

The rows of the DFT matrix F[N ] are exactly the same discrete complex exponentials that we
used to recover the Fourier coefficients of bandlimited signals in Theorem 6.2. This provides an
interesting interpretation of the DFT: if x ∈ CN contains equispaced samples from a bandlimited
signal xc with cut-off frequency kc– where N ≥ 2kc + 1– then the DFT of x is proportional to the
nonzero Fourier series coefficients of xc. However, it is important to emphasize that we can also
just view the DFT as a transformation of discrete vectors.

By Lemma 5.2 the rows (and columns) of F[N ] are orthogonal and have norm
√
N , which justifies

the definition of the inverse DFT.

Corollary 3.2. The inverse DFT inverts the DFT.

In general, the time complexity of multiplying an N ×N matrix with an N -dimensional vector is
N2. However one can compute the DFT much faster. The fast-Fourier transform (FFT) algorithm
exploits the structure of the DFT matrix to compute the DFT with complexity O (N logN). It
is difficult to overstate the importance of the FFT. Gilbert Strang has described it as the most
important numerical algorithm of our lifetime. The main insight underlying the FFT is that the
N -order DFT matrix can be expressed in terms of N/2-order DFT submatrices. To simplify the
exposition we assume that N is even, but similar decompositions are possible for odd N .

Lemma 3.3. Let F[N ] denote the N×N DFT matrix, where N is even. Then for k = 0, 1, . . . , N/2−
1, and any vector x ∈ CN

F[N ]x [k] = F[N/2]xeven [k] + exp

(
−i2πk

N

)
F[N/2]xodd [k] , (61)

F[N ]x [k +N/2] = F[N/2]xeven [k]− exp

(
−i2πk

N

)
F[N/2]xodd [k] , (62)

where xeven and xodd contain the even and odd entries of x respectively.

Proof. The proof is illustrated in Figure 9.

The Cooley-Tukey FFT algorithm exploits Lemma 3.3 to compute the DFT recursively.

Algorithm 3.4 (Cooley-Tukey Fast Fourier transform). If N = 1, output F[1]x := x. Otherwise
apply the following steps:

1. Compute F[N/2]xeven.

2. Compute F[N/2]xodd.

3. For k = 0, 1, . . . , N/2− 1 set

F[N ]x [k] := F[N/2]xeven [k] + exp

(
−i2πk

N

)
F[N/2]xodd [k] , (63)

F[N ]x [k +N/2] := F[N/2]xeven [k]− exp

(
−i2πk

N

)
F[N/2]xodd [k] . (64)
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(d) Application of N -order DFT matrix to an N -dimensional vector expressed in terms of two N/2-order
DFT matrices applied to two N/2-dimensional vectors.

Figure 9: Illustration of the proof of Lemma 3.3 for N := 8.
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DFT2L

DFT2L−1 DFT2L−1

DFT2L−2 DFT2L−2 DFT2L−2 DFT2L−2

DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3 DFT2L−3

Figure 10: Recursive structure of the FFT algorithm for N := 8.

Lemma 3.5 (Complexity of the FFT). The FFT algorithm has complexity O(N logN).

Proof. For simplicity, we assume that N = 2L for some positive integer L; the argument can be
adapted to the general case. The algorithm recursively decomposes the task of computing the
DFT into a tree with L levels depicted in Figure 10. Let us number the levels starting at 0, which
represents the root. At level l ∈ {1, . . . , L} there are 2l nodes. At each node we need to compute
Eq. (63), which amounts to scaling a vector of length 2L−l and adding it to another vector of the
same length. As a result at each level the complexity is of order 2l2L−l = 2L = N . Since there are
exactly log2N levels, the proof is complete.

Figure 11 shows a numerical comparison of the running time of the FFT and a naive matrix-based
implementation of the DFT. The difference is dramatic, as expected from Lemma 3.5. Essentially
the same algorithm can be applied to compute the inverse DFT.
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Figure 11: Numerical comparison of the running times of a naive matrix-based implementation of
the DFT (assuming the matrix is already built) and the FFT algorithm. Both approaches were
applied to 20 random complex vectors for each value of N .

4 Fourier series of multidimensional signals

In this section we discuss the extension of frequency representations to multidimensional spaces.
We consider the Hilbert space of complex-valued square-integrable functions defined on a hyper-
rectangle I := [a1, b1]× . . .× [ad, bd] ⊂ Rd with the standard inner product,

〈x, y〉 :=

∫
I
x (t ) y (t ) dt. (65)

A natural multidimensional generalization of the sinusoid in Eq. (4) is

a cos (2π〈f, t 〉+ θ) . (66)

Here the frequency f and the time variable t are d-dimensional vectors. Multidimensional sinusoids
are planar waves, constant along any hyperplane orthogonal to f . Along any direction v orthogonal
to f the function is constant:

a cos (2π〈f, t+ v 〉+ θ) = a cos (2π〈f, t 〉+ θ) . (67)

In the direction of f the function is periodic with period 1/‖f‖2 . Indeed, shifting t by m ||f ||2 in
the direction of the unit vector f/‖f‖2 yields

a cos

(
2π

〈
f, t+

m

||f ||2
f

||f ||2

〉
+ θ

)
= a cos (2π〈f, t〉+ i2πm+ θ) (68)

= a cos (2π〈f, t 〉+ θ) , (69)

for any integer m. In the direction of f they oscillate with a frequency equal to the `2 norm of f .
Figure 12 shows some examples. As in one dimension, working with complex sinusoids makes it
easier to define frequency representations, because the phase can be encoded linearly as a complex
multiplicative coefficient.
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Definition 4.1 (Multidimensional complex sinusoids). The complex sinusoid with frequency f ∈
Rd is given by

exp(i2π〈f, t 〉) := cos(2π〈f, t 〉) + i sin(2π〈f, t 〉), (70)

where t ∈ Rd.

Any multidimensional sinusoid with frequency f can be expressed as the sum of two complex
sinusoids with frequencies f and −f respectively:

cos (i2π〈f, t 〉+ θ) =
exp(iθ)

2
exp(i2π〈f, t 〉) +

exp(−iθ)
2

exp(−i2π〈f, t 〉). (71)

Multidimensional complex sinusoids can be expressed as the product of complex sinusoids aligned
with each axis.

exp(i2π〈f, t 〉) := exp

(
i2π

d∑
j=1

f [j]t [j]

)
(72)

=
d∏
j=1

exp(i2πf [j]t [j]). (73)

For simplicity, and because we are mostly interested in applications related to images, from now on
we focus on the two-dimensional case. However, most of the results generalize to higher dimensions.
To alleviate notation, we denote each coordinate by t1 := t[1] and t2 := t[2]. If turns out that
for any fixed positive T ∈ R, complex sinusoids with frequency coordinates equal to k1/T and
k2/T for k1, k2 ∈ Z are all orthogonal. Figure 12 shows real-valued 2D sinusoids corresponding to
different values of k1 and k2.

Lemma 4.2 (Orthogonality of multidimensional complex sinusoids). The family of complex sinu-
soids with integer frequencies

φ2D
k1,k2

(t1, t2) := exp

(
i2πk1t1
T

)
exp

(
i2πk2t2
T

)
, k1, k2 ∈ Z, (74)

is an orthogonal set of functions on any interval of the form [0, T ]× [0, T ], T > 0.

Proof. The result follows from Lemma 1.2. By Eq. (73)

φ2D
k1,k2

(t1, t2) = φk1 (t1)φk2 (t2) , (75)

so that 〈
φ2D
k1,k2

, φ2D
j1,j2

〉
=

∫ a+T

t1=a

∫ b+T

t2=b

φk1 (t1)φk2 (t2)φj1 (t1)φj2 (t2) dt1 dt2 (76)

= 〈φk1 , φj1〉 〈φk2 , φj2〉 (77)

= 0 (78)

as long as j1 6= k1 or j2 6= k2.
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Figure 12: Spatial (left) and frequency (right) representation of real-valued 2D sinusoids with
different 2D frequencies.
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Figure 13: Sagittal section of a human knee measured by magnetic-resonance imaging. The image
on the left shows the proton density of the section, whereas the image on the right shows the
magnitude of the corresponding Fourier series coefficients.

The 2D Fourier series represents 2D functions in terms of complex sinusoids.

Definition 4.3 (Fourier series). The Fourier series coefficients of a function x ∈ L2 [0, T ]× [0, T ]
for any T > 0, are given by

x̂[k1, k2] :=
〈
x, φ2D

k1,k2

〉
=

∫ a+T

t1=a

∫ b+T

t2=b

x(t1, t2) exp

(
−i2πk1t1

T

)
exp

(
−i2πk2t2

T

)
dt1 dt2. (79)

The Fourier series of order kc1, kc2 is defined as

Fkc1,kc2 {x} :=
1

T 2

kc1∑
k1=−kc1

kc2∑
k2=−kc2

x̂[k1, k2]φ2D
k1,k2

. (80)

As in the one-dimensional case, the Fourier series of a square-integrable function in multiple
dimensions converges to the function as the order tends to infinity.

Example 4.4 (Magnetic resonance imaging). Magnetic resonance imaging (MRI) is a medical-
imaging technique that measures the response of the atomic nuclei in biological tissues to high-
frequency radio waves when placed in a strong magnetic field. Remarkably, the radio waves can be
adjusted so that each measurement corresponds to a 2D Fourier coefficient of the proton density
of the hydrogen atoms in a region of interest. In MRI the 2D frequency representation is called
k-space. In order to reconstruct an MRI image, we compute the Fourier series corresponding to
the k-space measurements. Figure 13 shows an example. In this case, T := 25 cm, so that the
basic frequency in the Fourier series equals 0.04 cm−1. Figure 14 shows the Fourier series for
different values of kc1 and kc2. These values govern the vertical and horizontal resolution of the
image. 4
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Figure 14: On the right, Fourier series of the image in Figure 13 for different values of kc1 and kc2.
The magnitude of the corresponding Fourier coefficients is shown on the right.

23



5 Discrete Fourier transform in 2D

In this section we extend the definition of discrete Fourier transform to two dimensions. We
represent discrete signals in 2D as matrices belonging to the vector space of CN×N matrices
endowed with the standard inner product

〈A,B〉 := tr (B∗A) , A,B ∈ CN×N . (81)

This is equivalent to representing the signals as vectors in CN2
with the usual dot product. Discrete

complex sinusoids form a basis of the space.

Definition 5.1 (Discrete complex sinusoids). The discrete complex sinusoid ψ2D
k1,k2
∈ CN×N with

integer frequencies k1 and k2 is defined as

ψ2D
k1,k2

[j1, j2] := exp

(
i2πk1j1

N

)
exp

(
i2πk2j2

N

)
, 0 ≤ j1, j2 ≤ N − 1, (82)

or, in terms of 1D discrete sinusoids

ψ2D
k1,k2

= ψk1ψ
T
k2
. (83)

Lemma 5.2 (Orthonormal sinusoidal basis). The discrete complex exponentials 1
N
ψ2D
k1,k2

, 0 ≤
k1, k2 ≤ N − 1, form an orthonormal basis of CN×N .

Proof. By Eq. (83), we can reformulate the inner product of two 2D discrete sinusoids in terms of
1D discrete sinusoids 〈

ψ2D
k1,k2

, ψ2D
l1,l2

〉
= tr

((
ψ2D
l1,l2

)∗
ψ2D
k1,k2

)
(84)

= (ψk1)
∗ψl1(ψk2)

∗ψl2 . (85)

Lemma 5.2 then implies that the inner product equals N if k1 = l1 and k2 = l2, and zero
otherwise. Since there are N2 vectors in the set and they are linearly independent, they form a
basis of CN2

.

The 2D discrete Fourier transform is just a change of basis that expresses a 2D vector in terms of
2D discrete complex sinusoids.

Definition 5.3 (2D discrete Fourier transform). The discrete Fourier transform (DFT) of a 2D
array X ∈ CN×N is given by

X̂ [k1, k2] :=
〈
X,ψ2D

k1,k2

〉
, 0 ≤ k1, k2 ≤ N − 1, (86)

or equivalently by

X̂ := F[N ]X F[N ], (87)

where F[N ] is the 1D DFT matrix defined in Eq. (58). The inverse DFT of a 2D array Ŷ ∈ CN×N

equals

Y =
1

N2
F ∗[N ]Ŷ F

∗
[N ]. (88)
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Recall that by Lemma 5.2 the rows (and columns) of F[N ] are orthogonal and have norm
√
N ,

which justifies the definition of the inverse DFT.

Corollary 5.4. The inverse 2D DFT inverts the 2D DFT.

By Lemma (3.5), the complexity of computing the 2D DFT using the FFT algorithm isO(N2 logN).
In contrast, a naive implementation using matrix-vector multiplications would have complexity
O(N3).

6 Sampling theorem in 2D

As in one dimension, bandlimited signals are signals that are well represented by a finite number
of Fourier-series coefficient, like the image in Figure 13. To simplify the definition, we consider
Fourier series that have the same order in the vertical and horizontal indices.

Definition 6.1 (Bandlimited signal). A signal defined on the 2D rectangle [0, T ]× [0, T ], T > 0,
is bandlimited with a cut-off frequency kc if it is equal to its Fourier series representation of order
kc, i.e.

x(t1, t2) =
1

T 2

kc∑
k1=−kc

kc∑
k2=−kc

x̂[k1, k2] exp

(
i2πk1t1
T

)
exp

(
i2πk2t2
T

)
. (89)

Bandlimited functions can be exactly recovered from a finite number of samples. To simplify
notation we consider functions supported on the square [0, T )2 for some real T > 0, without loss
of generality. We will focus on equispaced sampling patterns of the form:

X[N ] :=


x
(

0
N
, 0
N

)
x
(

0
N
, T
N

)
· · · x

(
0
N
, T − T

N

)
x
(
T
N
, 0
N

)
x
(
T
N
, T
N

)
· · · x

(
T
N
, T − T

N

)
· · · · · · · · · · · ·

x
(
T − T

N
, 0
N

)
x
(
T − T

N
, T
N

)
· · · x

(
T − T

N
, T − T

N

)

 . (90)

The sampling theorem, generalized to 2D, provides a condition on N to ensure exact recovery of
the bandlimited signal from such measurements.

Theorem 6.2 (Nyquist-Shannon-Kotelnikov sampling theorem). Any bandlimited signal x ∈
L2[0, T )2, where T > 0, with cut-off frequency kc can be recovered exactly from N2 uniformly
spaced samples as long as

N ≥ 2kc + 1, (91)

where 2kc + 1 is known as the Nyquist rate. Recovery can be carried out by computing the Fourier
series coefficients,

x̂[k1, k2] =
T

N2

〈
ψ2D
k1,k2

, X[N ]

〉
(92)

=
T

N2
ψ∗k1X[N ]ψk2 . (93)
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Proof. For any m1, m2, we have φ2D
m1,m2

[
j1T
N
, j2T
N

]
= ψ2D

m1,m2
[j1, j2], so

T

N2

〈
ψ2D
k1,k2

, X[N ]

〉
=

T

N2

〈
ψ2D
k1,k2

,
1

T

kc∑
m1=−kc

kc∑
m2=−kc

x̂[m1,m2]ψ2D
m1,m2

〉
(94)

=
kc∑

m1=−kc

kc∑
m2=−kc

x̂[m1,m2]

〈
1

N
ψ2D
k1,k2

,
1

N
ψ2D
m1,m2

〉
(95)

= x̂[k1, k2], (96)

which follows from Lemma 5.2.
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