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Prerequisites

Covariance matrix

Principal component analysis



Goals

Define Gaussian random vectors and explain connection to principal
component analysis



Gaussian random variables

The pdf of a Gaussian or normal random variable ã with mean µ and
standard deviation σ is given by

fã (a) =
1√
2πσ

e−
(a−µ)2

2σ2



Gaussian random vector

A Gaussian random vector x̃ is a random vector with joint pdf

fx̃ (x) =
1√

(2π)n |Σ|
exp

(
−1
2

(x − µ)T Σ−1 (x − µ)

)
where µ ∈ Rd is the mean and Σ ∈ Rd×d the covariance matrix

Σ ∈ Rd×d is positive definite (positive eigenvalues)



Contour surfaces

Set of points at which pdf is constant when µ = 0

c = xTΣ−1x

= xTUΛ−1UT x

=
d∑

i=1

(uTi x)2

λi

Ellipsoid with axes proportional to
√
λi



2D example

µ = 0

Σ =

[
0.5 −0.3
−0.3 0.5

]
λ1 = 0.8
λ2 = 0.2

u1 =

[
1/
√
2

−1/
√
2

]
u2 =

[
1/
√
2

1/
√
2

]

How does the ellipse look like?
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Uncorrelation implies independence

If the covariance matrix is diagonal,

Σx̃ =


σ2

1 0 · · · 0
0 σ2

2 · · · 0
...

...
. . .

...
0 0 · · · σ2

d


the entries of a Gaussian random vector are independent



Proof

Σ−1
x̃ =


1
σ2

1
0 · · · 0

0 1
σ2

2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
d



|Σ| =
d∏

i=1

σ2
i



Proof

fx̃ (x) =
1√

(2π)d |Σ|
exp

(
−1
2

(x − µ)T Σ−1 (x − µ)

)

=
1∏d

i=1

√
(2π)σi

exp

(
d∑

i=1

−(x [i ]− µ[i ])2

2σ2
i

)

=
d∏

i=1

1√
(2π)σi

exp

(
−(x [i ]− µ[i ])2

2σ2
i

)

=
d∏

i=1

fx̃[i ] (x [i ])



Linear transformations

Let x̃ be a Gaussian random vector of dimension d with mean µ and
covariance matrix Σ

For any matrix A ∈ Rm×d and b ∈ Rm ỹ = Ax̃ + b is Gaussian with
mean Aµ+ b and covariance matrix AΣAT (as long as it is full rank)



PCA on Gaussian random vectors

Let x̃ be a Gaussian random vector with covariance matrix Σ := UΛUT

The principal components

p̃c := UT x̃

are Gaussian and have covariance matrix

UTΣUT = Λ

so they are independent

Only holds if data are Gaussian!



Maximum likelihood for Gaussian vectors

Log-likelihood of Gaussian parameters

(µML,ΣML)

:= arg max
µ∈Rd ,Σ∈Rd×d

log
n∏

i=1

1√
(2π)d |Σ|

exp

(
−1
2

(xi − µ)T Σ−1 (xi − µ)

)

= arg min
µ∈Rd ,Σ∈Rd×d

n∑
i=1

(xi − µ)T Σ−1 (xi − µ) +
n

2
log |Σ| .

Solution is sample mean and variance

Additional justification, but PCA is useful without Gaussian assumption!



What have we learned

Definition of Gaussian random vectors and connection to principal
component analysis


