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Linear regression

1 Mean squared error estimation

1.1 Minimum mean squared error estimation

We consider the problem of estimating a certain quantity of interest that we model as a random
variable ỹ. We evaluate our estimate using its average squared deviation from ỹ, which we call
the mean squared error (MSE). Imagine that the only information we have is the probability
distribution of ỹ, i.e. its probability mass function (pmf) or probability density function (pdf).
For example, we want to estimate the temperature in New York tomorrow, but without up-to-date
meteorological observations. We only have access to a probability distribution of temperatures
obtained from historical data. Since we have no measurements related to ỹ, we can only generate
a constant estimate using the pdf or pmf of ỹ. In that case, the best possible estimate in terms of
MSE is the mean of ỹ.

Theorem 1.1 (Minimum MSE constant estimate). For any random variable ỹ with finite mean,
E(ỹ) is the best constant estimate of ỹ in terms of MSE,

E(ỹ) = arg min
c∈R

E
(
(c− ỹ)2

)
. (1)

Proof. Let g(c) := E ((c− ỹ)2) = c2 − 2cE (ỹ) + E (ỹ2), we have

g′(c) = 2(c− E(ỹ)), (2)

g′′(c) = 2. (3)

The function is strictly convex and has a minimum where the derivative equals zero, i.e. when c
is equal to the mean.

Now let us study a more interesting situation where we do have some data related to our quantity
of interest, which we call the response (or dependent variable). We model these quantities, which
we call the features (also known as covariates or independent variables) as a random vector x̃
belonging to the same probability space as ỹ. In our temperature example, these features could
be the humidity, wind speed, temperature at other locations, etc. Estimating the response from
the features is a fundamental problem in statistics known as regression.

If we observe that x̃ equals a fixed value x, the uncertainty about ỹ is captured by the distribution
of ỹ given x̃ = x. Let w̃ be a random variable that follows that distribution. Minimizing the
MSE for the fixed observation x̃ = x is exactly equivalent to finding a constant vector c that
minimizes E[(w̃− c)2]. By Theorem 1.1 the optimal estimator is the mean of the distribution, i.e.
the conditional mean E(ỹ | x̃ = x). Recall that in statistics an estimator is a function of the data
that provides an estimate of our quantity of interest. The following theorem shows that this is
indeed the optimal estimator in terms of MSE. The proof is identical to that of Theorem 1.1.

Carlos Fernandez-Granda, Courant Institute of Mathematical Sciences and Center for Data Science, NYU
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Figure 1: Regression models for weather measurements gathered at a weather station in Oxford
over 150 years. On the left, the response is the monthly amount of rain, and the feature the
maximum temperature during the same month. On the right, the response and the feature are
the minimum and maximum monthly temperature respectively. The linear regression model is
compute by minimizing the least-squares fit. The nonlinear regression model is computed by
averaging the response over all values of the feature in bins of width equal to 1.5 degrees. In the
case of the rain, the linear model cannot capture the fact that at high temperatures, rain and
temperature are negatively correlated.

Theorem 1.2 (Minimum MSE estimator). Let x̃ and ỹ be real-valued random variables or random
vectors defined in the same probability space. If x̃ = x then the minimum MSE estimator of ỹ
given x̃ is the conditional expectation of ỹ given x̃ = x, i.e.

E(ỹ | x̃ = x) = arg min
w

E
[
(ỹ − w)2 | x̃ = x

]
. (4)

According to the theorem, to solve the regression problem all we need to do is compute the average
value of the response corresponding to every possible value of the features. The catch is that when
there is more than one or two features this requires too many data. As a simple example, consider
a problem with p features each taking d different values. In order to be able to perform estimation,
we need to compute the expected value of the response conditioned on every possible value of the
feature vector. However there are N = dp possible values! For even moderate values of p and d the
number is huge: if p = 5, and d = 100 then N = 1010! This is known as the curse of dimensionality
(where dimensionality refers to the dimension of the feature vector).

1.2 Linear minimum-mean-squared-error estimation

Due to the curse of dimensionality, tackling the regression problem requires making assumptions
about the relationship between the response and the features. A simple, yet often surprisingly
effective, assumption is that the relationship is linear (or rather affine), i.e. there exists a constant
vector β ∈ Rp and a constant β0 ∈ R such that

ỹ ≈ βT x̃+ β0. (5)
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Mathematically, the gradient of the regression function is constant, which means that the rate of
change in the response with respect to the features does not depend on the feature values. This
is illustrated in Figure 1, which compares a linear model with a nonlinear model for two simple
examples where there is only one feature. The slope of the nonlinear estimate varies depending
on the feature, but the slope of the linear model is constrained to be constant.

The following lemma establishes that when fitting an affine model by minimizing MSE, we can
just center the response and the features, and fit a linear model without additive constants.

Lemma 1.3 (Centering works). For any β ∈ Rp and any random variable ỹ and p-dimensional
random vector x̃,

min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E

[
(c(ỹ)− c(x̃)Tβ)2

]
, (6)

where c(ỹ) := ỹ − E(ỹ) and c(x̃) := x̃− E(x̃).

Proof. By Theorem 1.1, if we just optimize over β0 the minimum is E(ỹ − x̃Tβ), so

min
β0

E
[
(ỹ − x̃Tβ − β0)2

]
= E

[
(ỹ − x̃Tβ − E(ỹ) + E(x̃)Tβ)2

]
(7)

= E
[
(c(ỹ)− βT c(x̃))2

]
. (8)

From now on, we will assume that the response and the features are centered. The following
theorem derives the linear estimator that minimizes MSE. Perhaps surprisingly, it only depends
on the covariance matrix of the features and the cross-covariance between the response and the
features.

Theorem 1.4 (Linear minimum MSE estimator). Let ỹ be a zero-mean random variable and x̃ a
zero mean random vector with a full-rank covariance matrix equal to Σx̃, then

Σ−1x̃ Σx̃ỹ = arg min
β

E
[
(ỹ − x̃Tβ)2

]
, (9)

where Σx̃ỹ is the cross-covariance between x̃ and ỹ:

Σx̃ỹ[i] := E (x̃[i]ỹ) , 1 ≤ i ≤ p. (10)

The MSE of this estimator equals Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ.

Proof. We have

E((ỹ − x̃Tβ)2) = E
(
ỹ2
)
− 2E (ỹx̃)T β + βTE(x̃x̃T )β (11)

= βTΣx̃β − 2ΣT
x̃ỹβ + Var (ỹ) := f(β). (12)

The function f is a quadratic form. Its gradient and Hessian equal

∇f(β) = 2Σx̃β − 2Σx̃ỹ, (13)

∇2f(β) = 2Σx̃. (14)

The data are available here.
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Covariance matrices are positive semidefinite. For any vector v ∈ Rp

vTΣx̃v = Var
(
vT x̃

)
≥ 0. (15)

Since Σx̃ is full rank, it is actually positive definite, i.e. the inequality is strict as long as v 6= 0.
This means that the quadratic function is strictly convex and we can set its gradient to zero to
find its unique minimum. For the sake of completeness, we provide a simple proof of this. The
quadratic form is exactly equal to its second-order Taylor expansion around any point β1 ∈ Rp.
For all β2 ∈ Rp

f(β2) =
1

2
(β2 − β1)T∇2f(β1)(β2 − β1) +∇f(β1)

T (β2 − β1) + f(β1). (16)

The equality can be verified by expanding the expression. This means that if ∇f(β∗) = 0 then
for any β 6= β∗

f(β) =
1

2
(β − β∗)T∇2f(β∗)(β − β∗) + f(β∗) > f(β∗) (17)

because ∇2f(β∗) = Σx̃ is positive definite. The unique minimum can therefore be found by setting
the gradient to zero. Finally, the corresponding MSE equals

E
[
(ỹ − x̃TΣ−1x̃ Σx̃ỹ)

2
]

= E(ỹ2) + ΣT
x̃ỹΣ

−1
x̃ E(x̃x̃T )Σ−1x̃ Σx̃ỹ − 2E(ỹx̃T )Σ−1x̃ Σx̃ỹ

= Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ. (18)

Example 1.5 (Noise cancellation). We are interested in recording the voice of a pilot in a heli-
copter. To this end we place a microphone inside his helmet and another microphone outside. We
model the measurements as

x̃[1] = ỹ + αz̃ (19)

x̃[2] = αỹ + z̃, (20)

where ỹ is a random variable modeling the voice of the pilot, z̃ is a random variable modeling
the noise in the helicopter, and 0 < α < 1 is a constant that models the effect of the helmet.
From past data, we determine that ỹ, and z̃ are zero mean and uncorrelated with each other. The
variances of ỹ and z̃ are equal to 1 and 100 respectively.

By independence

Var(x̃[1]) = 1 + 100α2, (21)

Var(x̃[2]) = α2Var(ỹ) + Var(z̃) (22)

= α2 + 100, (23)

Cov(x̃[1]x̃[2]) = αE(ỹ2) + αE(z̃2) (24)

= 101α, (25)

Cov(ỹx̃[1]) = 1, (26)

Cov(ỹx̃[2]) = α, (27)

(28)
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so

Σx̃ =

[
1 + 100α2 101α

101α α2 + 100

]
, (29)

Σb̃x̃ =

[
1
α

]
, (30)

and by Theorem 1.4 the estimator equals

ŷ(x̃) = x̃T
[
1 + 100α2 101α

101α α2 + 100

]−1 [
1
α

]
(31)

= x̃T
1

(1 + 100α2)(α2 + 100)− 1012α2

[
α2 + 100 −101α
−101α 1 + 100α2

] [
1
α

]
(32)

= x̃T
1

100(1− α2)2

[
100(1− α2)
−100α(1− α2)

]
(33)

=
x̃[1]− αx̃[2]

1− α2
. (34)

Notice that

ŷ(x̃) =
x̃[1]− αx̃[2]

1− α2
(35)

=
ỹ + αz̃ − α(αỹ + z̃)

1− α2
(36)

= ỹ (37)

so the estimate is perfect! The linear estimator cancels out the noise completely by scaling the
second measurement and subtracting it from the first one. 4

1.3 Additive data model

In this section we analyze the linear minimum MSE estimator under the assumption that the data
are indeed generated by a linear model. To account for model inaccuracy and noise we incorporate
an additive scalar z̃. More precisely, we assume that the response equals

ỹ = x̃Tβtrue + z̃., (38)

where βtrue ∈ Rp is a vector of true linear coefficients βtrue ∈ Rp. A common assumption is
that the noise z̃ and the features are independent. In that case, the MSE achieved by the linear
minimum MSE estimator is equal to the variance of the noise. This make sense, because the noise
is unpredictable as it is independent from the observed features.

Theorem 1.6 (Linear minimum MSE for additive model). Let x̃ and z̃ in Eq. (38) be zero mean
and independent. Then the MSE achieved by the linear minimum MSE estimator of ỹ given x̃ is
equal to the variance of z̃.
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Proof. By independence of x̃ and z̃, and linearity of expectation we have

Var(ỹ) = Var(x̃Tβtrue + z̃) (39)

= βTtrueE
(
x̃x̃T

)
βtrue + Var (z̃) (40)

= βTtrueΣx̃βtrue + Var (z̃) , (41)

Σx̃ỹ = E
(
x̃(x̃Tβtrue + z̃)

)
(42)

= Σx̃βtrue. (43)

By Theorem 1.2,

MSE = Var(ỹ)− ΣT
x̃ỹΣ

−1
x̃ Σx̃ỹ (44)

= βTtrueΣx̃βtrue + Var(z̃)− βTtrueΣx̃Σ
−1
x̃ Σx̃βtrue (45)

= Var(z̃). (46)

2 Ordinary least squares

In Section 1 we have studied the regression problem under the idealized assumption that we have
access to the true joint statistics (covariance and cross-covariance) of the response and the features.
In practice, we need to perform estimation based on a finite set of data. Assume that we have
available n examples consisting of feature vectors coupled with their respective response: (y1, x1),
(y2, x2), . . . , (yn, xn), where yi ∈ R and xi ∈ Rp for 1 ≤ i ≤ n. We define a response vector y ∈ Rn,
such that y[i] := yi, and a feature matrix X ∈ Rp×n with columns equal to the feature vectors,

X :=
[
x1 x2 · · · xn

]
. (47)

If we interpret the feature data as samples of x̃ and the corresponding response values as samples
of ỹ, a reasonable estimate for the covariance matrix is the sample covariance matrix,

1

n
XXT =

1

n

n∑
i=1

xix
T
i . (48)

Similarly, the cross-covariance can be approximated by the sample cross-covariance, which contains
the sample covariance between each feature and the response,

1

n
Xy =


1
n

∑n
i=1 xi[1]yi

1
n

∑n
i=1 xi[2]yi

· · ·
1
n

∑n
i=1 xi[p]yi

 . (49)

We obtain the following approximation to the linear minimum MSE estimator derived in Theo-
rem 1.4,

Σ−1x̃ Σx̃ỹ ≈ (XXT )−1Xy. (50)
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This estimator has an alternative interpretation, which does not require probabilistic assumptions:
it minimizes the least-squares fit between the observed values of the response and the linear model.
In the statistics literature, this method is known as ordinary least squares (OLS).

Theorem 2.1 (Ordinary least squares). If X :=
[
x1 x2 · · · xn

]
∈ Rp×n is full rank and n ≥ p,

for any y ∈ Rn we have

βOLS := arg min
β

n∑
i=1

(
yi − xTi β

)2
(51)

= (XXT )−1Xy. (52)

Proof.

n∑
i=1

(
yi − xTi β

)2
= ‖y −XTβ‖22 (53)

= βTXXTβ − 2yTXTβ + yTy := f(β). (54)

The function f is a quadratic form. Its gradient and Hessian equal

∇f(β) = 2XXTβ − 2Xy, (55)

∇2f(β) = 2XXT . (56)

Since X is full rank, XXT is positive definite because for any nonzero vector v

vTXXTv =
∣∣∣∣XTv

∣∣∣∣2
2
> 0. (57)

By the same argument in Theorem 1.4, the unique minimum can be found by setting the gradient
to zero.

In practice, large-scale least-squares problems are not solved by using the closed-form solution,
due to the computational cost of inverting the sample covariance matrix of the features, but rather
by applying iterative optimization methods such as conjugate gradients.

Example 2.2 (Temperature prediction via linear regression). We consider a dataset of hourly
temperatures measured at weather stations all over the United States. Our goal is to design a
model that can be used to estimate the temperature in Yosemite Valley from the temperatures
of 133 other stations, in case the sensor in Yosemite fails. We perform estimation by fitting a
linear model where the response is the temperature in Yosemite and the features are the rest of
the temperatures (p = 133). We use 103 measurements from 2015 as a test set, and train a linear
model using a variable number of training data also from 2015 but disjoint from the test data. In
addition, we test the linear model on data from 2016. Figure 2 shows the results. With enough
data, the linear model achieves an error of roughly 2.5°C on the test data, and 2.8°C on the 2016
data. The linear model outperforms a naive single-station estimate, which uses the station that
best predicts the temperature in Yosemite for the training data. 4
The data are available at http://www1.ncdc.noaa.gov/pub/data/uscrn/products
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Figure 2: Performance of the OLS estimator on the temperature data described in Example 2.2.
The graph shows the square root of the MSE (RMSE) achieved by the model on the training and
test sets, and on the 2016 data, for different number of training data and compares it to the RMSE
of the best single-station estimate.

3 The singular-value decomposition

In order to gain further insight into linear models we introduce a fundamental tool in linear
algebra: the singular-value decomposition. We omit the proof of its existence, which follows from
the spectral theorem for symmetric matrices.

Theorem 3.1 (Singular-value decomposition). Every real matrix A ∈ Rm×k, m ≥ k, has a
singular-value decomposition (SVD) of the form

A =
[
u1 u2 · · · uk

]

s1 0 · · · 0
0 s2 · · · 0

. . .

0 0 · · · sk

 [v1 v2 · · · vk
]T

(58)

= USV T , (59)

where the singular values s1 ≥ s2 ≥ · · · ≥ sk are nonnegative real numbers, the left singular vectors
u1, u2, . . .uk ∈ Rm form an orthonormal set, and the right singular vectors v1, v2, . . . vk ∈ Rk

also form an orthonormal set.
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If m < k then the SVD is of the form

A =
[
u1 u2 · · · um

]

s1 0 · · · 0
0 s2 · · · 0

. . .

0 0 · · · sm

 [v1 v2 · · · vm
]T

(60)

= USV T , (61)

where s1 ≥ s2 ≥ · · · ≥ sm are nonnegative real numbers, and the singular vectors u1, u2, . . .um ∈
Rm, and v1, v2, . . . vm ∈ Rk form orthonormal sets.

The SVD provides a very intuitive geometric interpretation of the action of a matrix A ∈ Rm×k

on a vector w ∈ Rk, as illustrated in Figure 3:

1. Rotation of w to align the component of w in the direction of the ith right singular vector
vi with the ith axis:

V Tw =
k∑
i=1

〈vi, w〉ei, (62)

where ei is the ith standard basis vector.

2. Scaling of each axis by the corresponding singular value

SV Tw =
k∑
i=1

si〈vi, w〉ei. (63)

3. Rotation to align the ith axis with the ith left singular vector

USV Tw =
k∑
i=1

si〈vi, w〉ui. (64)

Another consequence of the spectral theorem for symmetric matrices is that the maximum scaling
produced by a matrix is equal to the maximum singular value. The maximum is achieved when
the matrix is applied to any vector in the direction of the right singular vector v1. If we restrict our
attention to the orthogonal complement of v1, then the maximum scaling is the second singular
value, due to the orthogonality of the singular vectors. In general, the direction of maximum
scaling orthogonal to the first i − 1 left singular vectors is equal to the ith singular value and
occurs in the direction of the ith singular vector.

Theorem 3.2. For any matrix A ∈ Rm×k, the singular values satisfy

s1 = max
{‖w‖2=1 | w∈Rk}

‖Aw‖2, (65)

si = max
{‖w‖2=1 | w∈Rk, w⊥v1,...,vi−1}

‖Aw‖2, (66)

(67)
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Figure 3: The action of any matrix can be decomposed into three steps: rotation to align the
right singular vectors to the axes, scaling by the singular values and a final rotation to align the
axes with the left singular vectors. In image (b) the second singular value is zero, so the matrix
projects two-dimensional vectors onto a one-dimensional subspace.
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and the right singular vectors satisfy

v1 = arg max
{‖w‖2=1 | w∈Rk}

‖Aw‖2, (68)

vi = arg max
{‖w‖2=1 | w∈Rk, w⊥v1,...,vi−1}

‖Aw‖2, 2 ≤ i ≤ k. (69)

The SVD provides a geometric interpretation of the OLS estimator derived in Theorem 2.1. Let
X = USV T be the SVD of the feature matrix, then

βOLS =
(
XXT

)−1
Xy (70)

= (US2UT )−1USV Ty (71)

= US−2UTUSV Ty (72)

= US−1V Ty. (73)

The OLS estimator is obtained by inverting the action of the feature matrix. This is achieved by
computing the components of the response vector in the direction of the right singular vectors,
scaling by the inverse of the corresponding singular values, and then rotating so that each com-

ponent is aligned with the corresponding left singular vector. The matrix
(
XXT

)−1
X is called a

left inverse or pseudoinverse of XT because
(
XXT

)−1
XXT = I.

4 Analysis of ordinary-least-squares estimation

In order to study the properties of OLS, we study an additive model. The training data are equal
to the n-dimensional vector

ỹtrain := XTβtrue + z̃train, (74)

where X ∈ Rp×n contains n p-dimensional feature vectors. The noise z̃train is modeled as an n-
dimensional iid Gaussian vector with zero mean and variance σ2. The feature matrix X is fixed
and deterministic. OLS is equivalent to maximum-likelihood estimation under this model.

Lemma 4.1. If the training data are interpreted as a realization of the random vector in Eq. (74)
the maximum-likelihood estimate of the coefficients is equal to the OLS estimator.

Proof. The likelihood is the probability density function of ỹtrain evaluated at the observed data
ytrain and interpreted as a function of the coefficient vector β,

Lytrain(β) =
1√

(2πσ2)n
exp

(
− 1

2σ2

∣∣∣∣ytrain −XTβ
∣∣∣∣2
2

)
. (75)

The maximum-likelihood estimate equals

βML = arg max
β
Lytrain(β) (76)

= arg max
β

logLytrain(β) (77)

= arg min
β

∣∣∣∣ytrain −XTβ
∣∣∣∣2
2
. (78)
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Figure 4: Deterministic quadratic component of the least-squares cost function (see Eq. (80))
for an example with two features where the left singular vectors of X align with the horizontal
and vertical axes, and the singular values equal 1 and 0.1. The quadratic form is an ellipsoid
centered at βtrue with axes aligned with the left singular vectors. The curvature of the quadratic
is proportional to the square of the singular values.

In the following sections we analyze the OLS coefficient estimate, as well as its corresponding
training and test errors when the training data follow the additive model.

4.1 Analysis of OLS coefficients

If the data follow the additive model in (74), the OLS cost function can be decomposed into a
deterministic quadratic form centered at βtrue and a random linear function that depends on the
noise,

arg min
β
‖ỹtrain −XTβ‖22 = arg min

β
‖z̃train −XT (β − βtrue)‖22 (79)

= arg min
β

(β − βtrue)TXXT (β − βtrue)− 2z̃TtrainX
T (β − βtrue) + z̃Ttrainz̃train

= arg min
β

(β − βtrue)TXXT (β − βtrue)− 2z̃TtrainX
Tβ. (80)

Figure 4 shows the quadratic component for a simple example with two features. Let X = USV T

be the SVD of the feature matrix. The contour lines of the quadratic form are ellipsoids, defined
by the equation

(β − βtrue)TXXT (β − βtrue) = (β − βtrue)TUS2UT (β − βtrue) (81)

=

p∑
i=1

s2i (u
T
i (β − βtrue))2 = c2 (82)

for a constant c. The axes of the ellipsoid are the left singular vectors of X. The curvature in
those directions is proportional to the square of the singular values, as shown in Figure 4. Due
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Figure 5: The left column show two realizations of the random linear component of the least-
squares cost function (see Eq. (80)) for the example in Figure 4. The right column shows the
corresponding cost function, which is a quadratic centered at a point that does not coincide with
βtrue due to the linear term. The minimum of the quadratic is denoted by βOLS.

to the random linear component, the minimum of the least-squares cost function is not at βtrue.
Figure 4 shows this for a simple example. The following theorem shows that the minimum of the
cost function is a Gaussian random vector centered at βtrue.

Theorem 4.2. If the training data follow the additive model in Eq. (74) and X is full rank, the
OLS coefficient

β̃OLS := arg min
β

∣∣∣∣ỹtrain −XTβ
∣∣∣∣
2
, (83)

is a Gaussian random vector with mean βtrue and covariance matrix σ2US−2UT , where X = USV T

is the SVD of the feature matrix.
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Figure 6: The left image is a scatterplot of OLS estimates corresponding to different noise re-
alizations for the example in Figure 5. The right image is a heatmap of the distribution of the
OLS estimate, which is centered at βtrue and has covariance matrix σ2US−2UT , as established in
Theorem 4.2.

Proof. We have

βOLS = (XXT )−1Xỹtrain (84)

= (XXT )−1XXTβtrue + (XXT )−1Xz̃train (85)

= βtrue + (XXT )−1Xz̃train (86)

= βtrue + US−1V T z̃train. (87)

The result then follows from Theorem 3.4 in the lecture notes on the covariance matrix.

Figure 6 shows a scatterplot of the OLS estimates corresponding to different noise realizations, as
well as the distribution of the OLS estimate. The contour lines of the distribution are ellipsoidal
with axes aligned with the left singular vectors of the feature matrix. The variance along those
axes is proportional to the inverse of the squared singular values. If there are singular values that
are very small, the variance in the direction of the corresponding singular vector can be very large,
as is the case along the horizontal axis of Figure 6.

4.2 Training error

In order to analyze the training error of the OLS estimator, we leverage a geometric perspective.
The OLS estimator approximates the response vector y using a linear combination of the corre-
sponding features. Each feature corresponds to a row of X. The linear coefficients weight these
rows. This means that the estimator is equal to the vector in the row space of the feature matrix
X that is closest to y. By definition, that vector is the orthogonal projection of y onto row(X).
Figure 7 illustrates this with a simple example with two features and three examples.

Lemma 4.3. Let X ∈ Rp×n be full-rank feature matrix, where n ≥ p, and let y ∈ Rn be a response

14



Figure 7: Illustration of Lemma 4.3 for a problem with two features corresponding to the two rows
of the feature matrix X1: and X2:. The least-squares solution is the orthogonal projection of the
data onto the subspace spanned by these vectors.

vector. The OLS estimator XTβOLS of y given X, where

βOLS := arg min
β∈Rp

∣∣∣∣y −XTβ
∣∣∣∣
2
, (88)

is equal to the orthogonal projection of y onto the row space of X.

Proof. Let USV T be the SVD of X. By Eq. (73)

XTβOLS = XTUS−1V Ty (89)

= V SUTUS−1V Ty (90)

= V V Ty. (91)

Since the rows of V form an orthonormal basis for the row space of X the proof is complete.

The result provides an intuitive interpretation for the training error achieved by OLS for the
additive model in Eq. (74): it is the projection of the noise vector onto the subspace spanned by
the feature vectors.

Lemma 4.4. If the training data follow the additive model in Eq. (74) and X is full rank, the
training error of the OLS estimator XT β̃OLS is the projection of the noise onto the orthogonal
complement of the row space of X.
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Proof. By Lemma 4.3

ỹtrain −XT β̃OLS = ỹtrain − Prow(X) ỹtrain (92)

= XTβtrue + z̃train − Prow(X) (XTβtrue + z̃train) (93)

= XTβtrue + z̃train −XTβtrue − Prow(X) z̃train (94)

= Prow(X)⊥ z̃train. (95)

We define the average training square error as the average error incurred by the OLS estimator
on the training data,

Ẽ2
train :=

1

n

∣∣∣∣∣∣ỹtrain −XT β̃OLS

∣∣∣∣∣∣2
2
. (96)

By Lemma 4.4, if the noise is Gaussian, then the training error is the projection of an n-dimensional
iid Gaussian random vector onto the subspace orthogonal to the span of the feature vectors. The
iid assumption means that the Gaussian distribution is isotropic. The dimension of this subspace
equals n − p, so the fraction of the variance in the Gaussian vector that lands on it should be
approximately equal to 1− p/n. The following theorem establishes that this is indeed the case.

Theorem 4.5. If the training data follow the additive model in Eq. (74) and X is full rank, then
the mean of the average training error defined in Eq. (96) equals

E
(
Ẽ2

train

)
= σ2

(
1− p

n

)
(97)

and its variance equals

Var(Ẽ2
train) =

2σ4(n− p)
n2

. (98)

Proof. By Lemma 4.4

nẼ2
train =

∣∣∣∣Prow(X)⊥ z̃train
∣∣∣∣2
2

(99)

= z̃TtrainV⊥V
T
⊥ V⊥V

T
⊥ z̃train (100)

=
∣∣∣∣V T
⊥ z̃train

∣∣∣∣2
2
, (101)

where the columns of V⊥ are an orthonormal basis for row(X)⊥. V T
⊥ z̃train is a Gaussian vector of

dimension n− p with covariance matrix

ΣV T
⊥ z̃train

= V T
⊥ Σz̃trainV⊥ (102)

= V T
⊥ σ

2IV⊥ (103)

= σ2I. (104)

The error is therefore equal to the square `2 norm of an iid Gaussian random vector. Let w̃ be a
d-dimensional zero-mean Gaussian random vector w̃ with unit variance. The expected value of its
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square `2 norm is

E
(
||w̃||22

)
= E

(
d∑
i=1

w̃[i]2

)
(105)

=
d∑
i=1

E
(
w̃[i]2

)
(106)

= d. (107)

The mean square equals

E
[(
||w̃||22

)2]
= E

( d∑
i=1

w̃[i]2

)2
 (108)

=
d∑
i=1

d∑
j=1

E
(
w̃[i]2w̃[j]2

)
(109)

=
d∑
i=1

E
(
w̃[i]4

)
+ 2

d−1∑
i=1

d∑
j=i+1

E
(
w̃[i]2

)
E
(
w̃[j]2

)
(110)

= 3d+ d(d− 1) (the 4th moment of a standard Gaussian equals 3) (111)

= d(d+ 2), (112)

so the variance equals

Var
(
||w̃||22

)
= E

[(
||w̃||22

)2]− E2
(
||w̃||22

)
(113)

= 2d. (114)

As d grows, the relative deviation of the squared norm of the Gaussian vector from its mean
decreases proportionally to

√
2/d, as shown in Figure 8. Geometrically, the probability density

concentrates close to the surface of a sphere with radius
√
d. By definition of the training error,

we have

Ẽ2
train =

1

n

∣∣∣∣V T
⊥ z̃train

∣∣∣∣2
2

(115)

=
σ2

n
||w̃||22 , (116)

so the result follows from setting d := n− p in Eqs. (107) and (114).

The variance of the square error scales with 1/n, which implies that the error concentrates around
its mean with high probability as the number of examples in the training set grows.

For large n, the error equals the variance of the noisy component σ2, which is the error achieved by
the true coefficients βtrue. When n ≈ p, however, the error can be much smaller. This is bad news.
We cannot possibly fit the noisy component of the response using the features, because they are
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Figure 8: The graphs shows the `2 norm of 100 independent samples from standard Gaussian
random vectors in different dimensions. The norms of the samples concentrate around the square
root of the dimension.

independent. Therefore, if an estimator achieves an error of less than σ it must be overfitting the
training noise, which will result in a higher generalization error on held-out data. This suggests
that the OLS estimator overfits the training data when the number of examples is small with
respect to the number of features. Figure 9 shows that this is indeed the case for the dataset in
Example 2.2. In fact, the training error is proportional to

(
1− p

n

)
as predicted by our theoretical

result.

4.3 Test error

The test error of an estimator quantifies its performance on held-out data, which have not been
used to fit the model. We model the test data as

ỹtest := x̃Ttestβtrue + z̃test. (117)

The linear coefficients are the same as in the training set, but the features and noise are different.
The features are modeled as a p-dimensional random vector x̃test with zero mean (the features
are assumed to be centered) and the noise z̃test is a zero-mean Gaussian random variable with the
same variance σ2 as the training noise. The training and test noise are assumed to be independent
from each other and from the features. Our goal is to characterize the test error

Ẽtest := ỹtest − x̃Ttestβ̃OLS (118)

= z̃test + x̃Ttest

(
βtrue − β̃OLS

)
, (119)

where β̃OLS is computed from the training data.

Theorem 4.6 (Test mean square error). If the training data follow the additive model in Eq. (74),
X is full rank, and the test data follow the model in Eq. (117), then the mean square of the test
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error equals

E(Ẽ2
test) = σ2

(
1 +

p∑
i=1

Var(uTi x̃test)

s2i

)
, (120)

where Σx̃test is the covariance matrix of the feature vector, s1, . . . , sp are the singular values of X
and v1, . . . , vp are the right singular vectors.

Proof. By assumption, the two components of the test error in Eq. (119) are independent, so the
variance of their sum is the sum of their variances:

Var
(
ỹtest − x̃Ttestβ̃OLS

)
= σ2 + Var

(
x̃Ttest

(
βtrue − β̃OLS

))
(121)

Since everything is zero mean, this also holds for the mean square. Let USV T be the SVD of X.
The coefficient error equals

βOLS − βtrue =

p∑
i=1

vTi z̃train
si

ui, (122)

by Theorem 4.2. This implies

E

[(
x̃Ttest

(
βtrue − β̃OLS

))2]
= E

( p∑
i=1

vTi z̃train u
T
i x̃test

si

)2
 (123)

=

p∑
i=1

E
[
(vTi z̃train)2

]
E
[
(uTi x̃test)

2
]

s2i
, (124)

where the second equality holds because when we expand the square, the cross terms cancel due
to the independence assumptions and linearity of expectation. For i 6= j

E

(
vTi z̃train u

T
i x̃test

si

vTj z̃train u
T
j x̃test

sj

)
=

E
(
uTi x̃testu

T
j x̃test

)
sisj

vTi E
(
z̃trainz̃

T
train

)
vj (125)

=
E
(
uTi x̃testu

T
j x̃test

)
sisj

vTi vj (126)

= 0. (127)

By linearity of expectation, we conclude

E

[(
x̃Ttest

(
βtrue − β̃OLS

))2]
=

p∑
i=1

vTi E(z̃trainz̃
T
train)viu

T
i E(x̃testx̃

T
test)ui

s2i
(128)

= σ2

p∑
i=1

uTi Σx̃testui
s2i

, (129)

because the covariance matrix of the training noise z̃train equals σ2I.
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Figure 9: Comparison of the theoretical approximation for the training and test error of the OLS
with the actual errors on the temperature data described in Example 2.2. The parameter σ is
fixed based on the asymptotic value of the error.

The square of the ith singular value of the training covariance matrix is proportional to the sample
variance of the training data in the direction of the ith singular value ui,

s2i
n

=
uiXX

Tui
n

(130)

= uTi ΣXui (131)

= var (Pui X ) . (132)

If this sample variance is a good approximation to the variance of the test data in that direction
then

E(Ẽ2
test) ≈ σ2

(
1 +

p

n

)
. (133)

However, if the training data is not large enough, the sample covariance matrix of the training
data may not provide a good estimate of the feature variance in every direction. In that case, there
may be terms in the test error where si is very small, due to correlations between the features,
but the true directional variance is not. Figure 10 shows that some of the singular values of the
training matrix in the temperature prediction are indeed minuscule. Unless the test variance in
that direction cancel them out, this results in a large test error.

Intuitively, estimating the contribution of low-variance components of the feature vector to the
linear coefficients requires amplifying them. This also amplifies the training noise in those direc-
tions. When estimating the response, this amplification is neutralized by the corresponding small
directional variance of the test features as long as it occurs in the right directions (which is the
case if the sample covariance matrix is a good approximation to the test covariance matrix). Oth-
erwise, it will result in a high response error. This typically occurs when the number of training
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Figure 10: Singular values of the training matrix in Example 2.2 for different numbers of training
data.

data is small with respect to the number of features. The effect is apparent in Figure 2 for small
values of n.

21


	Mean squared error estimation
	Minimum mean squared error estimation
	Linear minimum-mean-squared-error estimation
	Additive data model

	Ordinary least squares
	The singular-value decomposition
	Analysis of ordinary-least-squares estimation
	Analysis of OLS coefficients
	Training error
	Test error


