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Prerequisites

Calculus (complex numbers)

Linear algebra (orthogonality, basis, projections)

Fourier series



Sampling

Signals often model continuous objects

Challenge: How to measure them so that they can stored/processed

A common way is sampling their values at specific locations

Crucial question: Are we losing any information?



Sampling a complex sinusoid

We sample a complex sinusoid φk(t) := exp
(
i2πkt
T

)
in [0,T ) at N

equidistant locations

0, T
N , 2T

N , . . . , (N−1)T
N



Can we distinguish it from complex sinusoids with other
frequencies?



Sampling a complex sinusoid

φk

(
jT

N

)
= exp

(
i2πkjT
TN

)
= exp

(
i2πkj
N

)
= exp

(
i2πkj
N

+ i2πpj
)

for any integer p

= exp

(
i2π(k + pN)j

N

)
= φk+pN

(
jT

N

)



Sampling a complex sinusoid

These frequencies yield the same samples:

. . . , k−2N
T , k−N

T , k
T , k+N

T , k+2N
T , . . .

Can we at least distinguish between 0, 1
T , 2

T , . . . , N−1
T ?



Discrete complex sinusoids

Recall φk
(
jT
N

)
= exp

(
i2πkjT
TN

)
= exp

(
i2πkj
N

)

The discrete complex sinusoid ψk ∈ CN with frequency k is

ψk [j ] := exp

(
i2πkj
N

)
, 0 ≤ j , k ≤ N − 1



ψ2 (N=10)



ψ3 (N=10)



Inner product between discrete sinusoids

〈ψk , ψl〉 =
N−1∑
j=0

ψk [j ]ψl [j ]

=
N−1∑
j=0

exp

(
i2π (k − l) j

N

) (
= N if k = l so ||ψk ||2 =

√
N
)

=
1− exp

(
i2π(k−l)N

N

)
1− exp

(
i2π(k−l)

N

)
= 0 if k 6= l

The discrete complex sinusoids form an orthogonal basis of CN



Bandlimited signals

A bandlimited signal cut-off frequency kc/T is equal to its Fourier series
of order kc

x(t) =
1
T

kc∑
k=−kc

x̂ [k] exp

(
i2πkt
T

)

Bandlimited signals have a finite representation (2kc + 1 coefficients)



Sampling a bandlimited signal on a uniform grid

Bandlimited signal x measured at N equispaced points in interval T

Samples: x
( 0
N

)
, x
(
T
N

)
, x
(2T

N

)
, . . . , x

(
(N−1)T

N

)



Sampling a bandlimited signal on a uniform grid

Using Fourier series

x

(
jT

N

)
=

1
T

kc∑
k=−kc

x̂k exp

(
i2πkjT
NT

)

=
1
T

kc∑
k=−kc

x̂k exp

(
i2πkj
N

)

=
1
T

kc∑
k=−kc

x̂kψk [j ]

Vector of samples equals

x[N] =
1
T

kc∑
k=−kc

x̂kψk



Sampling a bandlimited signal on a uniform grid

x[N] =
1
T

kc∑
k=−kc

x̂kψk

We can recover the coefficients x̂k? under 2 conditions:

1. There are more equations than unknowns N ≥ 2kc + 1

2. ψ−kc , ψ−kc+1, . . . , ψkc−1, ψkc are linearly independent



Sampling a bandlimited signal on a uniform grid

Let N = 2kc + 1

In that case

ψj−kc = ψj−kc+N

= ψkc+1+j

In that case ψ−kc , ψ−kc+1, . . . , ψ−1 are ψkc+1, ψkc+2, . . . , ψN−1

so ψ−kc , ψ−kc+1, . . . , ψkc−1, ψkc are ψ0, ψ1, . . . , ψN−2, ψN−1

They are all orthogonal!



Sampling a bandlimited signal on a uniform grid

How do we recover the Fourier coefficients assuming N = 2kc + 1?

x[N] =
1
T

kc∑
k=−kc

x̂kψk

T

N

〈
x[N], ψk

〉
=

T

N

〈
1
T

kc∑
m=−kc

x̂mψm, ψk

〉

=
kc∑

m=−kc

x̂m

〈
1√
N
ψm,

1√
N
ψk

〉
= x̂k



Nyquist-Shannon-Kotelnikov sampling theorem

Any bandlimited signal x ∈ L2[0,T ), where T > 0, with cut-off
frequency kc/T can be recovered exactly from N uniformly spaced
samples x (0), x (T/N), . . . , x (T − T/N) as long as

N ≥ 2kc + 1,

where 2kc + 1 is known as the Nyquist rate

The Fourier series coefficients x̂ are recovered by computing

x̂k =
T

N

〈
x[N], ψk

〉



Audio

Range of frequencies that human beings can hear is from 20 Hz to 20 kHz

At what frequency should we sample (at least)?

Typical rates used in practice: 44.1 kHz (CD), 48 kHz, 88.2 kHz, 96 kHz



Sampling a real sinusoid

Consider a real sinusoid with frequency equal to 4 Hz

x(t) := cos(8πt)
= 0.5 exp(−i2π4t) + 0.5 exp(i2π4t)

measured over one second, i.e. T = 1 s

What is the cut-off frequency kc
T ? 4 Hz

Number of required samples N? 2kc + 1 = 9



N = 10

x[10] =


x(0)
x
( 1

10

)
· · ·

x( 9
10)



= 0.5


exp (−i2π4 · 0)
exp

(
−i2π4 · 1

10

)
· · ·

exp
(
−i2π4 · 9

10

)
+ 0.5


exp(i2π4 · 0)
exp

(
i2π4 · 1

10

)
· · ·

exp
(
i2π4 · 9

10

)


= 0.5ψ−4 + 0.5ψ4



Recovery

N = 10, so ψ−4, ψ−3, . . . , ψ3, ψ4 are orthogonal

x̂ rec[k] =
T

N

〈
x[N], ψk

〉

x̂ rec[−4] = 1
9
〈0.5ψ−4 + 0.5ψ4, ψ−4〉 = 0.5

x̂ rec[4] =
1
9
〈0.5ψ−4 + 0.5ψ4, ψ4〉 = 0.5

x̂ rec[k] =
1
9
〈0.5ψ−4 + 0.5ψ4, ψk〉 = 0 k ∈ {−3,−2,−1, 0, 1, 2, 3}



Recovered Fourier coefficients (N = 10)
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Recovered signal (N = 10)
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What if N = 5 and we assume (mistakenly) kc = 2?

Remember that ψk+pN = ψk+5p = ψk for any p, so

x[5] =


x(0)
x
(1

5

)
· · ·
x(4

5)

 = 0.5ψ−4 + 0.5ψ4 = 0.5ψ1 + 0.5ψ−1



What if N = 5 and we assume (mistakenly) kc = 2?

x̂ rec[k] =
T

N

〈
x[N], ψk

〉

x̂ rec[−2] = 1
5
〈0.5ψ1 + 0.5ψ−1, ψ−2〉 = 0

x̂ rec[−1] = 1
5
〈0.5ψ1 + 0.5ψ−1, ψ−1〉 = 0.5

x̂ rec[0] =
1
5
〈0.5ψ1 + 0.5ψ1, ψ0〉 = 0

x̂ rec[1] =
1
5
〈0.5ψ1 + 0.5ψ1, ψ1〉 = 0.5

x̂ rec[2] =
1
5
〈0.5ψ1 + 0.5ψ1, ψ2〉 = 0



Recovered Fourier coefficients (N = 5)
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Recovered signal (N = 5)

x rec(t) = x̂ rec[−1] exp(−2πt) + x̂ rec[1] exp(2πt)
= cos(2πt) 6= cos(8πt) Aliasing!



Recovered signal (N = 5)
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Aliasing

Let x be a signal with cut-off frequency ktrue/T

We measure x[N], N samples of x at 0, T/N, 2T/N, . . .T − T/N

What happens if we recover the signal assuming it is bandlimited with
cut-off freq ksamp/T , N = 2ksamp + 1, but actually ktrue > ksamp?

x̂ rec[k] :=
T

N

〈
ψk , x[N]

〉
=

T

N

〈
1
T

ktrue∑
m=−ktrue

x̂ [m]ψm, ψk

〉

=
1
N

ktrue∑
m=−ktrue

x̂ [m] 〈ψm, ψk〉

=
∑

{(m−k)modN=0}

x̂ [m]



Electrocardiogram: Fourier coefficients (magnitude)
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Sampling an electrocardiogram

Signal is approximately bandlimited at kc
T = 50 Hz

T = 8 s, so kc = 50T = 400

To avoid aliasing N ≥ 801



Recovered Fourier coefficients (N=1,000)
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Recovered signal (N=1,000)
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Sampling an electrocardiogram

We mistakenly assume that the signal is approximately bandlimited at
around 40 Hz so kc = 312 and N = 625

x̂ rec[k] =
∑

{(m−k)mod 625=0}

x̂ [m]

Component at m = ±400 (50 Hz) shows up at ±225 (28.1 Hz)



Recovered Fourier coefficients (N = 625)
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Recovered signal (N = 625)
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What have we learned

Definition of orthogonal basis of discrete complex sinusoids

How to recover bandlimited signals from a finite number of samples

That insufficient sampling leads to aliasing


