

The Sampling Theorem

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Calculus (complex numbers)

Linear algebra (orthogonality, basis, projections)

Fourier series

Signals often model continuous objects

Challenge: How to measure them so that they can stored/processed

A common way is sampling their values at specific locations

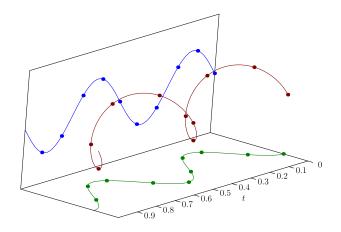
Crucial question: Are we losing any information?

Sampling a complex sinusoid

We sample a complex sinusoid $\phi_k(t) := \exp\left(\frac{i2\pi kt}{T}\right)$ in [0, T) at N equidistant locations

$$0, \ \frac{T}{N}, \ \frac{2T}{N}, \ \ldots, \ \frac{(N-1)T}{N}$$

Can we distinguish it from complex sinusoids with other frequencies?



Sampling a complex sinusoid

$$\phi_k \left(\frac{jT}{N}\right) = \exp\left(\frac{i2\pi k j T}{TN}\right)$$
$$= \exp\left(\frac{i2\pi k j}{N}\right)$$
$$= \exp\left(\frac{i2\pi k j}{N} + i2\pi p j\right) \qquad \text{for any integer } p$$
$$= \exp\left(\frac{i2\pi (k + pN) j}{N}\right)$$
$$= \phi_{k+pN} \left(\frac{jT}{N}\right)$$

Sampling a complex sinusoid

These frequencies yield the same samples:

$$\ldots, \ \frac{k-2N}{T}, \ \frac{k-N}{T}, \ \frac{k}{T}, \ \frac{k+N}{T}, \ \frac{k+N}{T}, \ \frac{k+2N}{T}, \ \ldots$$

Can we at least distinguish between 0, $\frac{1}{T}$, $\frac{2}{T}$, ..., $\frac{N-1}{T}$?

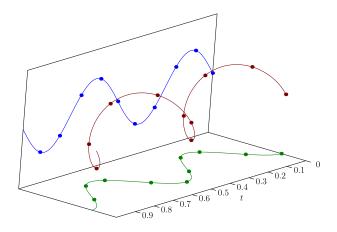
Discrete complex sinusoids

Recall
$$\phi_k\left(\frac{jT}{N}\right) = \exp\left(\frac{i2\pi k jT}{TN}\right) = \exp\left(\frac{i2\pi k j}{N}\right)$$

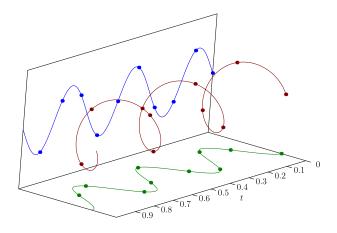
The discrete complex sinusoid $\psi_k \in \mathbb{C}^N$ with frequency k is

$$\psi_k[j] := \exp\left(rac{i2\pi k j}{N}
ight), \qquad 0 \leq j, k \leq N-1$$

ψ_2 (N=10)



ψ_3 (N=10)



Inner product between discrete sinusoids

$$\begin{aligned} \langle \psi_k, \psi_l \rangle &= \sum_{j=0}^{N-1} \psi_k [j] \,\overline{\psi_l [j]} \\ &= \sum_{j=0}^{N-1} \exp\left(\frac{i2\pi \left(k-l\right)j}{N}\right) \, \left(= N \quad \text{if } k = l \text{ so } ||\psi_k||_2 = \sqrt{N}\right) \\ &= \frac{1 - \exp\left(\frac{i2\pi (k-l)N}{N}\right)}{1 - \exp\left(\frac{i2\pi (k-l)}{N}\right)} \\ &= 0 \qquad \text{if } k \neq l \end{aligned}$$

The discrete complex sinusoids form an orthogonal basis of \mathbb{C}^N

A bandlimited signal cut-off frequency k_c/T is equal to its Fourier series of order k_c

$$x(t) = rac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}[k] \exp\left(rac{i2\pi kt}{T}
ight)$$

Bandlimited signals have a finite representation $(2k_c + 1 \text{ coefficients})$

Bandlimited signal x measured at N equispaced points in interval T

Samples:
$$x\left(\frac{0}{N}\right)$$
, $x\left(\frac{T}{N}\right)$, $x\left(\frac{2T}{N}\right)$, ..., $x\left(\frac{(N-1)T}{N}\right)$

Using Fourier series

$$\begin{aligned} x\left(\frac{jT}{N}\right) &= \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}_k \exp\left(\frac{i2\pi k jT}{NT}\right) \\ &= \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}_k \exp\left(\frac{i2\pi k j}{N}\right) \\ &= \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}_k \psi_k[j] \end{aligned}$$

Vector of samples equals

$$x_{[N]} = \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}_k \psi_k$$

$$\mathbf{x}_{[N]} = \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{\mathbf{x}}_k \psi_k$$

We can recover the coefficients \hat{x}_k ? under 2 conditions:

1. There are more equations than unknowns $N \ge 2k_c + 1$

2.
$$\psi_{-k_c}$$
, ψ_{-k_c+1} , \ldots , ψ_{k_c-1} , ψ_{k_c} are linearly independent

Let $N = 2k_c + 1$

In that case

$$\psi_{j-k_c} = \psi_{j-k_c+N}$$
$$= \psi_{k_c+1+j}$$

In that case ψ_{-k_c} , ψ_{-k_c+1} , ..., ψ_{-1} are ψ_{k_c+1} , ψ_{k_c+2} , ..., ψ_{N-1}

so ψ_{-k_c} , ψ_{-k_c+1} , ..., ψ_{k_c-1} , ψ_{k_c} are ψ_0 , ψ_1 , ..., ψ_{N-2} , ψ_{N-1}

They are all orthogonal!

How do we recover the Fourier coefficients assuming $N = 2k_c + 1$?

$$x_{[N]} = \frac{1}{T} \sum_{k=-k_c}^{k_c} \hat{x}_k \psi_k$$

$$\frac{T}{N} \left\langle x_{[N]}, \psi_k \right\rangle = \frac{T}{N} \left\langle \frac{1}{T} \sum_{m=-k_c}^{k_c} \hat{x}_m \psi_m, \psi_k \right\rangle$$
$$= \sum_{m=-k_c}^{k_c} \hat{x}_m \left\langle \frac{1}{\sqrt{N}} \psi_m, \frac{1}{\sqrt{N}} \psi_k \right\rangle$$
$$= \hat{x}_k$$

Nyquist-Shannon-Kotelnikov sampling theorem

Any bandlimited signal $x \in \mathcal{L}_2[0, T)$, where T > 0, with cut-off frequency k_c/T can be recovered exactly from N uniformly spaced samples $x(0), x(T/N), \ldots, x(T - T/N)$ as long as

 $N \geq 2k_c + 1$,

where $2k_c + 1$ is known as the Nyquist rate

The Fourier series coefficients \hat{x} are recovered by computing

$$\hat{x}_{k} = \frac{T}{N} \left\langle x_{[N]}, \psi_{k} \right\rangle$$

Range of frequencies that human beings can hear is from 20 Hz to 20 kHz

At what frequency should we sample (at least)?

Typical rates used in practice: 44.1 kHz (CD), 48 kHz, 88.2 kHz, 96 kHz

Sampling a real sinusoid

Consider a real sinusoid with frequency equal to 4 Hz

$$egin{aligned} & \mathbf{x}(t) := \cos(8\pi t) \ & = 0.5 \exp(-i2\pi 4t) + 0.5 \exp(i2\pi 4t) \end{aligned}$$

measured over one second, i.e. T = 1 s

What is the cut-off frequency $\frac{k_c}{T}$? 4 Hz

Number of required samples N? $2k_c + 1 = 9$

N = 10

$$\begin{aligned} x_{[10]} &= \begin{bmatrix} x(0) \\ x\left(\frac{1}{10}\right) \\ \vdots \\ x\left(\frac{9}{10}\right) \end{bmatrix} \\ &= 0.5 \begin{bmatrix} \exp\left(-i2\pi 4 \cdot 0\right) \\ \exp\left(-i2\pi 4 \cdot \frac{1}{10}\right) \\ \vdots \\ \exp\left(-i2\pi 4 \cdot \frac{9}{10}\right) \end{bmatrix} + 0.5 \begin{bmatrix} \exp(i2\pi 4 \cdot 0) \\ \exp\left(i2\pi 4 \cdot \frac{1}{10}\right) \\ \vdots \\ \exp\left(i2\pi 4 \cdot \frac{9}{10}\right) \end{bmatrix} \\ &= 0.5\psi_{-4} + 0.5\psi_{4} \end{aligned}$$

Recovery

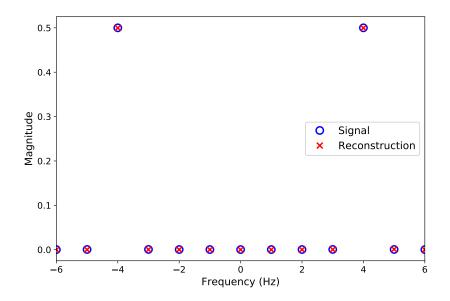
$$N=$$
 10, so $\psi_{-4}, \psi_{-3}, \ldots, \psi_{3}, \psi_{4}$ are orthogonal $\hat{x}^{
m rec}[k]=rac{T}{N}\left\langle x_{[N]}, \psi_{k}
ight
angle$

$$\hat{x}^{\mathsf{rec}}[-4] = rac{1}{9} \left< 0.5 \psi_{-4} + 0.5 \psi_{4}, \psi_{-4} \right> = 0.5$$

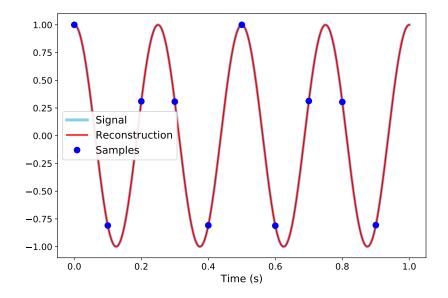
$$\hat{x}^{\mathsf{rec}}[4] = \frac{1}{9} \left< 0.5\psi_{-4} + 0.5\psi_4, \psi_4 \right> = 0.5$$

$$\hat{x}^{\mathsf{rec}}[k] = \frac{1}{9} \langle 0.5\psi_{-4} + 0.5\psi_4, \psi_k \rangle = 0 \qquad k \in \{-3, -2, -1, 0, 1, 2, 3\}$$

Recovered Fourier coefficients (N = 10)



Recovered signal (N = 10)



What if N = 5 and we assume (mistakenly) $k_c = 2$?

Remember that $\psi_{k+pN} = \psi_{k+5p} = \psi_k$ for any p, so

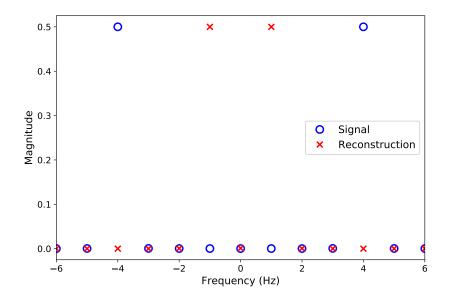
$$x_{[5]} = \begin{bmatrix} x(0) \\ x\left(\frac{1}{5}\right) \\ \\ \\ \\ x\left(\frac{4}{5}\right) \end{bmatrix} = 0.5\psi_{-4} + 0.5\psi_{4} = 0.5\psi_{1} + 0.5\psi_{-1}$$

What if N = 5 and we assume (mistakenly) $k_c = 2$?

$$\hat{x}^{\mathsf{rec}}[k] = \frac{T}{N} \left\langle x_{[N]}, \psi_k \right\rangle$$

$$\begin{split} \hat{x}^{\text{rec}}[-2] &= \frac{1}{5} \left\langle 0.5\psi_1 + 0.5\psi_{-1}, \psi_{-2} \right\rangle = 0\\ \hat{x}^{\text{rec}}[-1] &= \frac{1}{5} \left\langle 0.5\psi_1 + 0.5\psi_{-1}, \psi_{-1} \right\rangle = 0.5\\ \hat{x}^{\text{rec}}[0] &= \frac{1}{5} \left\langle 0.5\psi_1 + 0.5\psi_1, \psi_0 \right\rangle = 0\\ \hat{x}^{\text{rec}}[1] &= \frac{1}{5} \left\langle 0.5\psi_1 + 0.5\psi_1, \psi_1 \right\rangle = 0.5\\ \hat{x}^{\text{rec}}[2] &= \frac{1}{5} \left\langle 0.5\psi_1 + 0.5\psi_1, \psi_2 \right\rangle = 0 \end{split}$$

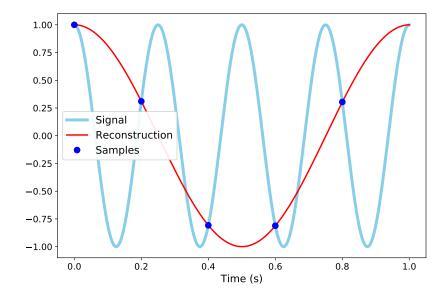
Recovered Fourier coefficients (N = 5)



Recovered signal (N = 5)

$$x^{\text{rec}}(t) = \hat{x}^{\text{rec}}[-1] \exp(-2\pi t) + \hat{x}^{\text{rec}}[1] \exp(2\pi t)$$
$$= \cos(2\pi t) \neq \frac{\cos(8\pi t)}{\sin(2\pi t)} \qquad \text{Aliasing!}$$

Recovered signal (N = 5)



Aliasing

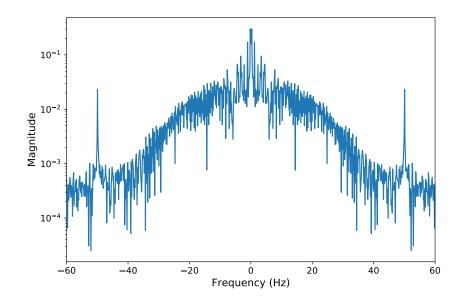
Let x be a signal with cut-off frequency k_{true}/T

We measure $x_{[N]}$, N samples of x at 0, T/N, 2T/N, ... T - T/N

What happens if we recover the signal assuming it is bandlimited with cut-off freq k_{samp}/T , $N = 2k_{samp} + 1$, but actually $k_{true} > k_{samp}$?

$$\hat{x}^{\text{rec}}[k] := \frac{T}{N} \left\langle \psi_k, x_{[N]} \right\rangle$$
$$= \frac{T}{N} \left\langle \frac{1}{T} \sum_{m=-k_{\text{true}}}^{k_{\text{true}}} \hat{x}[m] \psi_m, \psi_k \right\rangle$$
$$= \frac{1}{N} \sum_{m=-k_{\text{true}}}^{k_{\text{true}}} \hat{x}[m] \left\langle \psi_m, \psi_k \right\rangle$$
$$= \sum_{\{(m-k) \text{ mod } N=0\}} \hat{x}[m]$$

Electrocardiogram: Fourier coefficients (magnitude)



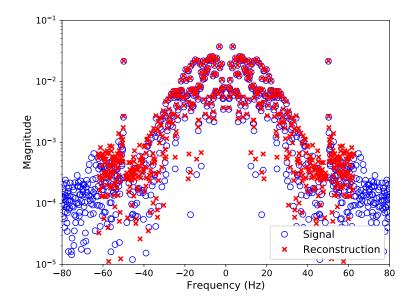
Sampling an electrocardiogram

Signal is approximately bandlimited at $\frac{k_c}{T} = 50$ Hz

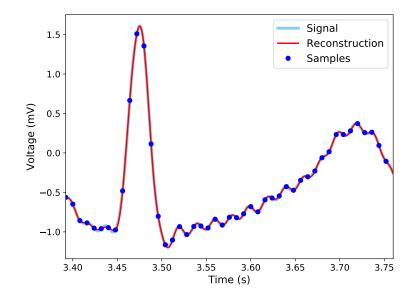
$$T = 8$$
 s, so $k_c = 50T = 400$

To avoid aliasing $N \ge 801$

Recovered Fourier coefficients (N=1,000)



Recovered signal (N=1,000)



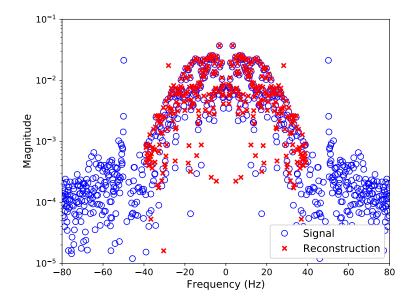
Sampling an electrocardiogram

We mistakenly assume that the signal is approximately bandlimited at around 40 Hz so $k_c = 312$ and N = 625

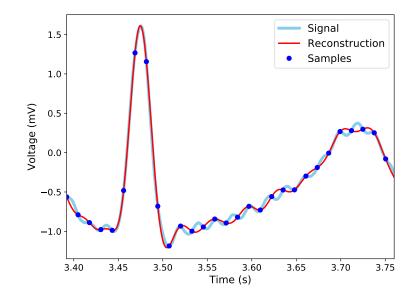
$$\hat{x}^{\text{rec}}[k] = \sum_{\{(m-k) \mod 625=0\}} \hat{x}[m]$$

Component at $m = \pm 400$ (50 Hz) shows up at ± 225 (28.1 Hz)

Recovered Fourier coefficients (N = 625)



Recovered signal (N = 625)



Definition of orthogonal basis of discrete complex sinusoids

How to recover bandlimited signals from a finite number of samples

That insufficient sampling leads to aliasing