
Mathematical Tools for Data Science Spring 2021

Stationarity

1 Overview

The topic of this chapter is stationarity, which is a fundamental concept in signal processing, and
in applications of machine learning to sound and images. Imagine that you want to fit a linear
model to perform an image-processing task. For example, the model functions a noisy image to a
clean image, a problem commonly known as denoising. A linear model estimates each pixel as a
linear combination of all other pixels. If the images have N pixels, then fitting the model amounts
to estimating an N × N matrix. Even pretty small images have 104 pixels; the corresponding
linear model would have 100 million parameters! Learning an arbitrary linear model is therefore
completely impractical, in terms of computational and memory resources and in terms of the data
needed to fit the model. In order to alleviate this issue, models in signal processing often assume
that signals are stationary, which means that they have translation-invariant statistics. Nonlinear
models based on this idea (convolutional neural networks) are the current state of the art for most
image-processing tasks.

Section 2 describes the effect of translations on the frequency representation of a signal. Section 3
introduces linear translation-invariant models, and the convolution operation. Section 4 defines
stationary signals and shows that their principal directions are sinusoidal. Section 5 describes
linear estimation under stationarity assumptions, which is commonly known as Wiener filtering.
Section 6 introduces convolutional neural networks, which are nonlinear stationary models, and
shows their remarkable performance for image denoising.

2 Translation

We consider circular translations, where the signals are interpreted as being periodic with period
N so the translations wrap around. We index all vectors from 0 to N − 1, i.e. the first entry of
a vector x is x[0], the second x[1], and so on. Extending our results to translations that are not
circular requires being careful about border effects.

Definition 2.1 (Circular translation). We denote by x ↓s the sth circular translation or shift of a
vector x ∈ CN . For all 0 ≤ j ≤ N − 1,

x ↓s[j] = x[(j − s) modN]. (1)

For an N ×N signal X ∈ CN×N , circular translation by (s1, s2) ∈ CN×N is denoted by X ↓(s1,s2).
For all 0 ≤ j1, j2 ≤ N − 1,

X ↓(s1,s2)[j1, j2] = X[(j1 − s1) modN, (j2 − s2) modN]. (2)

1

Recall that we use complex exponentials to represent sinusoids when computing frequency repre-
sentations, because the phase can be encoded as a linear coefficient. Shifting a sinusoid amounts
to modifying its phase. As a result, shifting a complex sinusoid is equivalent to multiplying it by
a complex constant.

Lemma 2.2. For any discrete complex sinusoid ψk ∈ CN with integer frequency k and any integer
shift s

ψ ↓sk = exp

(
−i2πks

N

)
ψk. (3)

Proof. By the definition of a complex sinusoid,

ψ ↓sk [l] = exp

(
i2πk(l − s)

N

)
(4)

= exp

(
−i2πks

N

)
ψk[l]. (5)

Corollary 2.3. The discrete complex sinusoid ψ2D
k1,k2
∈ CN×N with integer frequencies k1 and k2

(ψ2D
k1,k2

) ↓(s1,s2) = exp

(
−i2πk1s1

N

)
exp

(
−i2πk2s2

N

)
ψ2D
k1,k2

. (6)

Proof. The result follows immediately from Lemma 2.2 because (ψ2D
k1,k2

) ↓(s1,s2) = ψ ↓s1k1
(ψ ↓s2k2

)T .

We can express any vector as a sum of discrete sinusoids each scaled by the corresponding DFT
coefficient. If the vector is shifted, then Lemma 2.2 implies that each discrete sinusoid is just
scaled by a complex constant. This yields a simple expression for the Fourier coefficients of shifted
signals.

Theorem 2.4. Let x ∈ CN with DFT x̂ and y := x ↓s, 0 ≤ s ≤ N − 1. The DFT coefficients of y
are given by

ŷ [k] := exp

(
−i2πks

N

)
x̂ [k] , 0 ≤ k ≤ N − 1. (7)

Let X ∈ CN×N with DFT X̂ and Y := X ↓(s1,s2), 0 ≤ s1, s2 ≤ N − 1. The DFT coefficients of Y
are given by

Ŷ [k1, k2] := exp

(
−i2πks1

N

)
exp

(
−i2πks2

N

)
X̂ [k1, k2] , 1 ≤ k1, k2 ≤ N. (8)

2

Proof. We only prove the one-dimensional case, the 2D case follows by the same argument:

ŷ [k] := 〈x ↓s, ψk〉 (9)

= 〈x, ψ ↓−sk 〉 (10)

=

〈
x, exp

(
i2πks

N

)
ψk

〉
by Lemma 2.2 (11)

= exp

(
−i2πks

N

)
〈x, ψk〉 (12)

= exp

(
−i2πks

N

)
x̂ [k] . (13)

3 Linear translation-invariant models

As explained in Section 1, fitting linear models to perform signal processing tasks is often in-
tractable. Here we introduce translation-invariant linear models. Such models have the following
property: if we shift their input, then the corresponding output is also shifted, but otherwise stays
the same.

Definition 3.1 (Linear translation-invariant function). A function F from CN to CN is linear if
for any vectors x, y ∈ CN and any constant α ∈ C

F(x+ y) = F(x) + F(y), (14)

F(αx) = αF(x), (15)

and translation invariant if for any shift 0 ≤ s ≤ N − 1

F(x ↓s) = F(x) ↓s. (16)

A function F from CN×N to CN×N is linear if for any X, Y ∈ CN×N and any constant α ∈ C

F(X + Y) = F(X) + F(Y), (17)

F(αX) = αF(X), (18)

and translation invariant if for any 0 ≤ s1, s2 ≤ N − 1

F(X ↓(s1,s2)) = F(X) ↓(s1,s2). (19)

Recall that any finite-dimensional linear function can be represented by a matrix. Let FL : CN →
CN be a linear function. We have

FL (x) = FL

(
N−1∑
j=0

x[j]ej

)
(20)

=
N−1∑
j=0

x[j]FL (ej) (21)

=
[
FL (e0) FL (e1) · · · FL (eN−1)

]
x (22)

= Mx (23)

3

for any x ∈ CN , where ej is the jth standard vector (ej[j] = 1 and ej[k] = 0 for k 6= j). The
matrix M is N by N , its jth column is equal to the output corresponding to the jth standard-basis
vector.

Now let us consider a linear translation-invariant (LTI) function F . Since ej = e ↓j0 the columns of
the corresponding matrix are just shifts of each other. Consequently, the whole function can be
represented completely by its action on the first standard-basis vector e0:

F (x) =
N−1∑
j=0

x[j]F (ej) (24)

=
N−1∑
j=0

x[j]F
(
e ↓j0

)
(25)

=
N−1∑
j=0

x[j]F (e0) ↓j . (26)

Standard-basis vectors are often called impulses in the signal-processing literature, so the corre-
sponding output of the function is called an impulse response.

Definition 3.2 (Impulse response). Let e0 ∈ CN be the first standard-basis vector if we index the
entries from 0 to N − 1 (e0[0] = 1 and e0[j] = 0 for 0 < j ≤ N − 1). The vector hF ∈ Cn obtained
by applying a function F : Cn → Cn to e0 is called the impulse response of the function,

hF := F(e0). (27)

Let E0 ∈ CN×N be the first standard-basis vector in CN×N if we index each dimension from 0 to
N − 1 (E[0, 0] = 1 and E[j1, j2] = 0 for 0 < j1, j2 ≤ N − 1). The vector HF ∈ CN×N obtained by
applying a function F : CN×N → CN×N to E0 is the impulse response of the function,

HF := F(E0). (28)

By Eq. (26) the action of an LTI function on any vector can be expressed in terms of the impulse
response

F (x) =
N−1∑
j=0

x[j]h ↓jF . (29)

An LTI function can therefore be parametrized by its impulse response, which has dimension N .
This is a dramatic reduction from the N2 parameters needed to store an arbitrary linear function.
The operation described by Eq. (29) is equal to a sum of shifted copies of the impulse response
hF weighted by the entries of the signal x. This is known as a convolution. Note that we index
the entries of the vectors from 0 to N − 1, but this is without loss of generality, the definition is
equivalent if we consider any N contiguous integers.

4

Definition 3.3 (Circular convolution). The circular convolution between two vectors x, y ∈ CN

is defined as

x ∗ y [j] :=
N−1∑
s=0

x [s] y ↓s [j] , 0 ≤ j ≤ N − 1. (30)

The 2D circular convolution between X ∈ CN×N and Y ∈ CN×N is defined as

X ∗ Y [j1, j2] :=
N−1∑
s1=0

N−1∑
s2=0

X [s1, s2]Y ↓(s1,s2) [j1, j2] , 0 ≤ j1, j2 ≤ N − 1. (31)

The following theorem is a direct consequence of the definition of convolution and Eq. (29). The
2D results follows by the same argument.

Theorem 3.4. The action of an LTI function F : CN → CN on a vector x ∈ CN is equal to the
circular convolution of x and the impulse response hF of F ,

F (x) = x ∗ hF . (32)

The action of a 2D LTI function F : CN×N → CN×N on X ∈ CN×N is equal to the circular
convolution of X and the impulse response HF of F ,

F (X) = X ∗HF . (33)

The convolution between two vectors can be efficiently computed by multiplying their Fourier
coefficients. This is illustrated in Figures 1 and 2.

Theorem 3.5 (Convolution in time is multiplication in frequency). Let y := x1 ∗ x2 for x1, x2 ∈
CN . Then the DFT of y equals

ŷ [k] = x̂1 [k] x̂2 [k] , 0 ≤ k ≤ N − 1, (34)

x̂1 and x̂2 are the DFTs of x1 and x2 respectively.

Let Y := X1 ∗X2 for X1, X2 ∈ CN×N . Then the 2D DFT of Y is given by

Ŷ [k1, k2] = X̂1 [k1, k2] X̂2 [k1, k2] . (35)

5

Time Frequency

Signal 1

40 20 0 20 40
0.0

0.2

0.4

0.6

0.8

1.0

40 20 0 20 40
5

0

5

10

15

20

Signal 2

40 20 0 20 40
0.0

0.2

0.4

0.6

0.8

1.0

40 20 0 20 40

2

0

2

4

6

8

10

Convolution

40 20 0 20 40
0

2

4

6

8

10

40 20 0 20 40

0

50

100

150

200

Figure 1: Convolution between two one-dimensional signals. The frequency representation of both
signals and their convolution is shown on the right.

6

Proof. We have

ŷ [k] := 〈x1 ∗ x2, ψk〉 (36)

=

〈
N−1∑
s=0

x1 [s]x ↓s2 , ψk

〉
(37)

=

〈
N−1∑
s=0

x1 [s]
1

N

N−1∑
j=0

exp

(
−i2πjs

N

)
x̂2[j]ψj, ψk

〉
by Theorem 2.4 (38)

=
N−1∑
j=0

x̂2[j]
1

N
〈ψj, ψk〉

N−1∑
s=0

x1 [s] exp

(
−i2πjs

N

)
(39)

=
N−1∑
j=0

x̂1[j]x̂2[j]
1

N
〈ψj, ψk〉 (40)

= x̂1[k]x̂2[k]. (41)

The 2D result follows from the same argument.

A useful consequence of this theorem is that we can compute convolutions by computing the DFT
of the two vectors via the FFT, multiplying their DFT coefficients, and then taking the inverse
DFT again via the FFT. The complexity for N -dimensional vectors is of order N logN .

The DFT of the impulse response of an LTI function is known as its transfer function. By
Theorems 3.4 and 3.5 applying an LTI function to a vector just scales each of its Fourier coefficients
by the corresponding entry of the transfer function.

Corollary 3.6. Let ĥF be the DFT of the impulse response of an LTI function F . Then for any
x ∈ CN

F(x) =
1

N

N−1∑
k=0

ĥF [k]x̂[k]ψk. (42)

Let ĤF be the 2D DFT of the impulse response of a 2D LTI function F . Then for any X ∈ CN×N

F(X) =
1

N2

N−1∑
k1=0

N−1∑
k2=0

ĤF [k1, k2]X̂[k1, k2]ψ2D
k1,k2

. (43)

4 Stationary signals

In this section we introduce a mathematical definition of signals with translation-invariant statis-
tics, and study some of their properties. Signals such as sound and images often have translation-
invariant structure, so this is often a useful assumption. As a motivating example, Figure 3 shows
the results of applying PCA to a set of piecewise-constant signals. It turns out that the principal
directions are sinusoidal! To understand why, we need to study the covariance matrices of signals
with translation-invariant statistics. If we restrict our attention to second-order statistics, then
such signals are called wide-sense or weak-sense stationary.

7

Space Frequency

Signal 1

0.2

0.4

0.6

0.8

10 1

100

101

102

103

104

Signal 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100

102

Convolution

30

40

50

60

70

80

90

10 13

10 10

10 7

10 4

10 1

102

105

Figure 2: Image blurring caused by diffraction in optical systems is often modeled as a convolution
between a high-resolution image and a blurring kernel or point-spread function. The result is a
low-resolution image due to the local averaging resulting from convolving with the kernel, which in
this example is Gaussian. In the frequency domain, the high-frequency components of the image
are suppressed because the corresponding frequency components of the kernel are very small.

8

Sample covariance matrix Eigenvalues

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100

10 1

100

101

Ei
ge

nv
al

ue
s

Principal directions
1 2 3 4 5

6 7 8 9 10

15 20 25 30 40

50 60 70 80 90

Figure 3: The top row shows examples of piecewise constant signals. The heatmap below displays
the sample covariance matrix of a set of such signals. The graph to the right of the heatmap
shows the eigenvalues of the sample covariance matrix. Finally, the images at the bottom show
the eigenvectors, which represent the principal directions of the data.

9

Definition 4.1. An N-dimensional random vector x̃ is wide-sense or weak-sense stationary if it
satisfies two conditions. First, it has a constant mean, i.e. there exists a constant µ such that

E (x̃[j]) = µ, 0 ≤ j ≤ N − 1. (44)

Second, the covariance between any pair of entries of x̃ only depends on the separation between
them. There exists a function acx̃ such that

Cov (x̃[j1]x̃[j2]) = acx̃(j2 − j1 modN), 0 ≤ j1, j2 ≤ N − 1. (45)

The function acx̃ is known as the autocovariance of the random vector. Note that for any integer
j, acx̃(j) = acx̃(−j) = acx̃(N − j). We can write the covariance matrix of x̃ as

Σx̃ =


acx̃(0) acx̃(N − 1) · · · acx̃(1)
acx̃(1) acx̃(0) · · · acx̃(2)

· · ·
acx̃(N − 1) acx̃(N − 2) · · · acx̃(0)

 (46)

=
[
ax̃ a ↓1x̃ a ↓2x̃ · · · a ↓N−1

x̃

]
, (47)

where we define the N-dimensional autocovariance vector ax̃ as

ax̃ :=


acx̃(0)
acx̃(1)
acx̃(2)
· · ·

 . (48)

Note that we consider periodic translations (hence the modN in Eq. 45) to simplify the analysis.
If the signal is only stationary with respect to non-periodic translations, then the analysis that
follows still holds approximately for most realistic situations. We refer to the review by Gray [2] for
a more in-depth discussion. The covariance matrix of a wide-sense stationary signal is circulant.

Definition 4.2 (Circulant matrix). A circulant matrix is a matrix where each column vector is
obtained by applying a unit circular shift to the previous column. For example,

a d c b
b a d c
c b a d
d c b a

 =
[
h h ↓1 h ↓2 h ↓3

]
, (49)

where h denotes the first column, is a circulant matrix.

The following theorem establishes that the eigenvectors of circulant matrices are sinusoidal, which
explains what we see in Figure 3.

Theorem 4.3. Let C ∈ CN×N be a circulant matrix where the columns are equal to shifts of the
first column h ∈ CN , then

C :=
1

N
F ∗ diag(ĥ)F, (50)

where F is the DFT matrix and the diagonal matrix diag(ĥ) contains the DFT coefficients of h.

10

Proof. Let c be equal to the first column of the circulant matrix. By the definition of circular
convolution, for any vector x ∈ CN

Cx =
N−1∑
s=0

x [s]h ↓s (51)

= h ∗ x (52)

=
1

N
F ∗ diag(ĥ)Fx, (53)

where the last step follows from Theorem 3.5. This implies C = 1
N
F ∗ diag(ĥ)F .

In words, the eigenvalues of circulant matrices are equal to the DFT coefficients of their rows, and
the eigenvectors equal complex sinusoids of corresponding frequencies. An immediate consequence
is that the principal directions of wide-sense stationary signals are sinusoidal. The principal
components equal the DFT coefficients of the autocovariance vector.

Corollary 4.4. Let x̃ be a wide-sense stationary vector with autocovariance vector ax̃, the eigen-
decomposition of the covariance matrix of x̃ equals

Σx̃ =
1

N
F ∗ diag(âx̃)F, (54)

where F is the DFT matrix, and âx̃ is the DFT of the autocovariance vector.

The careful reader may be surprised that the eigenvectors of the covariance matrix turn out to
be complex. In fact, they are real because the autocovariance is an even function (see homework
problem).

The same reasoning can be used to analyze covariance matrices of stationary 2D signals, which are
vectorized. In that case, the rows of the matrix have additional structure, they can be reshaped
into a 2D array that corresponds to the shape of the signals. Figure 4 shows the covariance between
pixels in 32× 32 images from the CIFAR-10 dataset. Pixels that are not too close to the borders
of the image have associated covariances that are approximately translation-invariant and decay
rather fast. Pixels close to the borders have longer ranging correlations (this is because many
images have uniform backgrounds surrounding a central object). Figure 5 shows the principal
directions obtained from the eigendecomposition of the covariance matrix, they are sinusoidal-
looking, while displaying additional structure due to the border effects.

The fact that stationary signals have approximately circulant covariance matrices, and therefore
sinusoidal principal directions, has an important consequence for dimensionality reduction: using
a sinusoidal basis is close to optimal (see Section 7 in the notes on PCA). Which sinusoidal
components to select depends on their associated variances (i.e. their associated eigenvalues). As
shown in Figure 5 for natural images the eigenvalues decay as their associated frequency increases
(see also Figure 11). Lower frequencies capture more variance than higher frequencies. Thus,
up to border effects, using a basis of low-frequency sinusoids is the best we can do to perform
dimensionality reduction if we care about minimizing `2-norm error. This reveals a shortcoming
of optimizing this metric: fine-scale details associated to high-frequencies such as textures or
sharp edges are very meaningful perceptually, but they have very small `2-norm, and are therefore

11

1 4 8 12

15 16 17 18

20 24 28 32

Figure 4: The top row shows examples of images from the CIFAR-10 dataset. The heatmaps below
displays rows of the covariance matrix reshaped to show the values corresponding to different pixels.
The pixels are located at the 16th row and at the column indicated above each heatmap.

12

1 2 3 4 5

6 7 8 9 10

15 20 25 30 40

50 60 70 80 90

100 150 100 250 300

400 500 600 800 1000

Figure 5: Eigenvectors of the sample covariance matrix of the CIFAR-10 data, reshaped to show
the values corresponding to each pixel. These are the principal directions of the data.

13

Figure 6: 8× 8 DCT basis vectors.

1 5 15 30 50

Figure 7: Result of projecting each 64-pixel patch from the image of a face onto the lowest 1, 5,
15, 30 and 50 2D DCT basis functions.

neglected. This effect is less apparent when the dimensionality reduction is applied to small
patches on the image, as opposed to the whole image. This is the insight underlying the JPEG
compression standard.

More specifically, JPEG uses the discrete cosine transform (DCT) to compress image patches. The
DCT is a variant of the discrete Fourier transform for real signals, which assumes that the signal
is symmetric (but only one half is observed). In that case the DFT components correspond to
discrete cosines (the coefficients corresponding to the sines are zero due to symmetry). Figure 6
shows the basis vectors of the 8×8 2D DCT1. Figure 7 shows the result of dividing a natural image
into 64-pixel patches and projecting it onto the span of the low-frequency DCT basis functions.
Ignoring some of the high-frequency components is almost imperceptible. JPEG exploits this
phenomenon to perform lossy compression of images. JPEG divides the image in 8 × 8 patches
and then quantizes the coefficients of each DCT band differently. More bits are used for lower-
frequency bands because errors in these bands are much more apparent to the human eye.

1The image is borrowed from https://upload.wikimedia.org/wikipedia/commons/2/24/DCT-8x8.png

14

https://upload.wikimedia.org/wikipedia/commons/2/24/DCT-8x8.png

5 Wiener filtering

In this section we consider a generalization of the regression problem, where our goal is to estimate
a multidimensional signal, as opposed to just a one-dimensional response. We model the signal of
interest as a random vector ỹ, and the available measurements as a random vector x̃. As discussed
in the notes on linear regression (Theorem 2.1), the estimate that minimizes mean-square error
is the conditional mean of ỹ given x̃. However, this is usually intractable to compute unless the
signals are very low dimensional, so it is necessary to constrain the regression model. Here we
focus on linear models. The following theorem is the multidimensional analog to Theorem 2.3.

Theorem 5.1 (Linear minimum MSE estimation). Let ỹ and x̃ be N-dimensional zero-mean
random vectors. Assume the covariance matrix of x̃ Σx̃ is full rank, then

Σ−1
x̃ Σx̃ỹ := arg min

B
E
(∣∣∣∣ỹ −BT x̃

∣∣∣∣2
2

)
, (55)

where Σx̃ỹ is the cross-covariance between x̃ and ỹ:

Σx̃ỹ := E
(
x̃ỹT

)
. (56)

Proof. Let Bj denote the jth column of B. The cost function can be decomposed into N decoupled
components

E
(∣∣∣∣ỹ −BT x̃

∣∣∣∣2
2

)
=

N∑
j=1

E
[(
ỹ[j]−BT

j x̃
)2
]
. (57)

By Theorem 1.4 in the notes on linear regression,

Σ−1
x̃ (Σx̃ỹ)j = arg min

Bj

E
[
(ỹ[j]− x̃TBj)

2
]
, (58)

where (Σx̃ỹ)j denotes the jth column of Σx̃ỹ, which implies the result.

The problem with this estimator is that it requires building an N ×N matrix, which is intractable
in most real-world situations: for images N is almost always larger than 104, for sequences of audio
of just a few seconds N ≈ 105 (as we saw in the notes on the frequency domain, audio is sampled
at rates of more than 40 kHz). Here we incorporate the assumption that the random vectors are
stationary to obtain a more tractable model. We begin by defining joint stationarity.

Definition 5.2. Two N-dimensional random vectors x̃ and ỹ are jointly wide-sense or weak-sense
stationary if they are each wide-sense or weak-sense stationary and the cross-covariance between
their entries only depends on the separation between them. There exists a function ccx̃,ỹ such that

Cov (x̃[j1]ỹ[j2]) = ccx̃ỹ(j2 − j1 modN), 0 ≤ j1, j2 ≤ N − 1. (59)

The function ccx̃ỹ is known as the cross-covariance function of the random vectors. Note that in
contrast to the covariance function, the cross-covariance function is not even. We can write the

15

cross-covariance matrix of x̃ and ỹ as

Σx̃ỹ =


ccx̃ỹ(0) ccx̃ỹ(N − 1) · · · ccx̃ỹ(1)
ccx̃ỹ(1) ccx̃ỹ(0) · · · ccx̃ỹ(2)

· · ·
ccx̃ỹ(N − 1) ccx̃ỹ(N − 2) · · · ccx̃ỹ(0)

 (60)

=
[
cx̃ỹ c ↓1x̃ỹ c ↓2x̃ỹ · · · c

↓N−1
x̃ỹ

]
, (61)

where we define the N-dimensional cross-covariance vector cx̃ as

cx̃ỹ :=


ccx̃ỹ(0)
ccx̃ỹ(1)
ccx̃ỹ(2)
· · ·

 . (62)

As in Definition 4.1 we consider periodic translations (hence the modN in Eq. 59) to simplify
the analysis. If the signal is only stationary with respect to non-periodic translations, then the
analysis that follows still holds approximately for most realistic situations. The following theorem
derives the best linear estimator (in terms of MSE) under a joint-stationarity assumption.

Theorem 5.3 (Wiener filter). Let x̃ and ỹ be N-dimensional zero-mean random vectors that are
jointly stationary, and let x̃F and ỹF denote the DFT coefficients of x̃ and ỹ respectively. The
linear estimate of ỹ given x̃ that minimizes MSE can be computed by convolving x̃ with the Wiener
filter w, which is defined as having DFT coefficients equal to

ŵ[k] :=
Cov(x̃F [k], ỹF [k])

Var(x̃F [k])
, 0 ≤ k ≤ N − 1, (63)

where the Fourier coefficients can be complex so the covariance and variance are defined as

Cov(x̃F [k], ỹF [k]) := E
(
x̃F [k]ỹF [k]

)
, (64)

Var(x̃F [k]) := E
(
|x̃F [k]|2

)
, 0 ≤ k ≤ N − 1. (65)

Proof. By Corollary 4.4

Σx̃ =
1

N
F ∗ diag(âx̃)F, (66)

and by Theorem 4.3

Σx̃ỹ =
1

N
F ∗ diag(ĉx̃)F, (67)

because Σx̃ỹ is a circulant matrix. By Theorem 5.1 the optimal linear transformation is given by

ΣT
x̃ỹΣ

−1
x̃ =

(
1

N
F ∗ diag(âx̃)F

)−1
1

N
F ∗ diag(ĉx̃)F (68)

=
1

N
F ∗ diag(â−1

x̃)F
1

N
F ∗ diag(ĉx̃)F (69)

=
1

N
F ∗ diag(â−1

x̃ ĉx̃)F. (70)

16

Let us consider the covariance matrix of the DFT coefficients of x̃. By linearity of expectation
and (66)

Σx̃F := E (Fx̃(Fx̃)∗) (71)

= FE
(
x̃x̃T

)
F ∗ (72)

= FΣx̃F
∗ (73)

= F
1

N
F ∗ diag(âx̃)FF

∗ (74)

= N diag(âx̃), (75)

so the Fourier coefficients are uncorrelated and

âx̃[k] =
Var(x̃F [k])

N
, 0 ≤ k ≤ N − 1. (76)

Similarly, by linearity of expectation and (67)

Σx̃F ỹF := E (Fx̃(F ỹ)∗) (77)

= FΣx̃ỹF
∗ (78)

= N diag(ĉx̃ỹ), (79)

so

ĉx̃ỹ[k] =
Cov(x̃F [k], ỹF [k])

N
, 0 ≤ k ≤ N − 1. (80)

Plugging Eqs. (76) and (80) into Eq. (70) completes the proof.

In words, under a joint-stationarity assumption, the linear minimum MSE estimate can be achieved
by computing the linear minimum MSE estimate of each DFT coefficient of the signal based
only on the corresponding DFT coefficient of the data. The reason is that the different Fourier
coefficients are all uncorrelated; the covariance and cross-covariance matrix of the DFT coefficients
are diagonal.

In practice, we use the sample variance and covariance of the DFT coefficients to construct the
Wiener filter. Interestingly, one can arrive at exactly the same estimator from a data-driven per-
spective, analogously to the relation between linear MMSE estimation and least squares. Assume
that we have available n pairs of observed signals: (y1, x1), (y2, x2), . . . , (yn, xn), where yi ∈ RN

and xi ∈ RN for 1 ≤ i ≤ n. If we have reason to believe that the signals have translation-invariant
statistics, a reasonable way to build an estimator is to compute the LTI model that minimizes the
least-squares cost function on the training set. It turns out that this is just the Wiener filter.

Theorem 5.4 (Data-driven Wiener filter). Let (x1, y1), . . . , (xn, yn) be a training set of n pairs of
observed signals of dimension N , which are all centered to have zero sample mean. The solution
to the `2-norm loss optimization problem

w := arg min
v∈CN

n∑
j=1

||yj − v ∗ xj||22 (81)

17

is the Wiener filter w with transfer function given by

ŵ =
cov

(
X̂ [k], Ŷ [k]

)
var
(
X̂ [k]

) , 0 ≤ k ≤ N − 1, (82)

where

cov
(
X̂ [k], Ŷ [k]

)
:=

1

n

n∑
j=1

x̂j[k]ŷj[k], (83)

var
(
X̂ [k]

)
:=

1

n

n∑
j=1

|x̂j[k]|2 , 0 ≤ k ≤ N − 1. (84)

Proof. The cost function can be rewritten in terms of the Fourier coefficients of the signals in the
training set by Theorem 3.5,

n∑
j=1

||yj − v ∗ xj||22 =
n∑
j=1

∣∣∣∣∣∣∣∣ 1√
N
F ∗(ŷj − v̂ ◦ x̂j)

∣∣∣∣∣∣∣∣2
2

(85)

=
1

N2

n∑
j=1

||ŷj − v̂ ◦ x̂j||22 (86)

=
1

N2

n∑
j=1

N∑
k=1

|ŷj[k]− v̂[k]x̂j[k]|2 :=
1

N2

N∑
k=1

Ck (v̂[k]) . (87)

This decouples the cost function into N terms, each of which only depends on one Fourier coeffi-
cient.

Ck (α) :=
1

2

n∑
j=1

|ŷj[k]− αx̂j[k]|2 (88)

=
n∑
j=1

|ŷj[k]|2 − 2 Re
{
ŷj[k]x̂j[k]

}
αR − 2 Im

{
ŷj[k]x̂j[k]

}
αI + |x̂j[k]|2

(
α2
R + α2

I

)
,

where αR and αI denote the real and imaginary part of α respectively. Setting the derivatives
with respect to these parameters to zero, we obtain

arg min
α∈C

Ck (α) =

∑n
j=1 Re

{
x̂j[k]ŷj[k]

}
∑n

j=1 |ŷj[k]|2
+ i

∑n
j=1 Im

{
x̂j[k]ŷj[k]

}
∑n

j=1 |ŷj[k]|2
. (89)

Optimal linear translation-invariant filtering is equivalent to scaling each Fourier coefficient of the
noisy signal by a fixed constant. In the case of additive iid Gaussian noise, the scaling has a very
simple expression.

18

Variance of Fourier coefficients

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 1

100

101

102

103

104

105

Wiener filters

σ = 0.02 σ = 0.1 σ = 0.5

Frequency

4000 2000 0 2000 4000
Frequency (Hz)

10 4

10 3

10 2

10 1

100

4000 2000 0 2000 4000
Frequency (Hz)

10 4

10 3

10 2

10 1

100

4000 2000 0 2000 4000
Frequency (Hz)

10 4

10 3

10 2

10 1

100

Time

3.115 3.120 3.125 3.130 3.135
Time (s)

0.0

0.2

0.4

0.6

0.8

3.115 3.120 3.125 3.130 3.135
Time (s)

0.0

0.2

0.4

0.6

0.8

3.115 3.120 3.125 3.130 3.135
Time (s)

0.0

0.2

0.4

0.6

0.8

Figure 8: The plot at the top shows the variance of the Fourier coefficients of a set of audio
signals, in which people say yes and no alternatively in Hebrew. The corresponding Wiener filters
for different noise levels are shown below in the frequency and time domains.

19

σ Clean Noisy Denoised

0.1

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

6000

4000

2000

0

2000

4000

6000

8000

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

7500

5000

2500

0

2500

5000

7500

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

8000

6000

4000

2000

0

2000

4000

6000

8000

Freq.

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

0.5

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

6000

4000

2000

0

2000

4000

6000

8000

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

15000

10000

5000

0

5000

10000

15000

4.0 4.1 4.2 4.3 4.4 4.5
Time (s)

7500

5000

2500

0

2500

5000

7500

10000

Freq.

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

4000 3000 2000 1000 0 1000 2000 3000 4000
Frequency (Hz)

10 3

10 2

10 1

100

101

102

103

Figure 9: Result of applying the filters in Figure 8 to two test audio signals with different noise
levels. Click on these links to listen to the audio: clean signal, noisy (σ = 0.1), denoised (σ = 0.1),
noisy (σ = 0.5), denoised (σ = 0.5).

20

http://www.cims.nyu.edu/~cfgranda/pages/MTDS_spring19/audio/audio_clean_1.wav
http://www.cims.nyu.edu/~cfgranda/pages/MTDS_spring19/audio/audio_noisy_sigma1_1.wav
http://www.cims.nyu.edu/~cfgranda/pages/MTDS_spring19/audio/audio_wiener_sigma1_1.wav
http://www.cims.nyu.edu/~cfgranda/pages/MTDS_spring19/audio/audio_noisy_sigma2_1.wav
http://www.cims.nyu.edu/~cfgranda/pages/MTDS_spring19/audio/audio_wiener_sigma2_1.wav

σ = 0.1

4.372 4.373 4.374 4.375 4.376 4.377 4.378
Time (s)

2000

1000

0

1000

2000

3000 Signal
Wiener denoising
Noisy data

σ = 0.5

4.372 4.373 4.374 4.375 4.376 4.377 4.378
Time (s)

7500

5000

2500

0

2500

5000

7500

Signal
Wiener denoising
Noisy data

Figure 10: Zoomed plots of the denoising results shown in Figure 9.

Example 5.5 (Denoising via Wiener filtering). Let us consider a denoising problem where the
data are modeled probabilistically as n samples from a random vector

x̃ = ỹ + z̃, (90)

where z̃ is zero-mean Gaussian noise with variance σ2, which is independent of the signal ỹ. The
goal is to estimate the signal from the noisy measurements.

Theorem 8.6 in the notes on PCA can be extended to complex random vectors. This implies that
the DFT of z̃ is a Gaussian vector with covariance matrix Fσ2IF ∗ = Nσ2I and mean zero. The
Fourier coefficients of the noise, which we denote as z̃F , are consequently iid complex Gaussian
random variables with zero mean and variance Nσ2. This implies

Cov(x̃F [k], ỹF [k]) = E
(
x̃F [k]ỹF [k]

)
(91)

= E
(
ỹF [k]ỹF [k]

)
+ E

(
z̃F [k]ỹF [k]

)
(92)

= Var (ỹF [k]) , (93)

and

Var(x̃F [k]) = Var (ỹF [k]) + Var (z̃F [k]) (94)

= Var (ỹF [k]) +Nσ2. (95)

By Theorem 5.3, the Fourier coefficients of the optimal denoising Wiener filter are given by

ŵ[k] =
Var (ỹF [k])

Var (ỹF [k]) +Nσ2
, 0 ≤ k ≤ N − 1. (96)

21

Variance of Fourier coefficients

90 65 40 15 10 35 60 85
k2

90

65

40

15

10

35

60

85

k 1

101

102

103

104

105

106

107

108

Wiener filters

σ = 0.04 σ = 0.1 σ = 0.2

Frequency

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

50 0 50
k2

75

50

25

0

25

50

75

k 1
10 3

10 2

10 1

Space

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 11: The heatmap at the top shows the variance of the Fourier coefficients of a set of
natural images. The corresponding Wiener filters for different noise levels are shown below in the
frequency and spatial domains.

22

Clean Noisy Denoised

σ = 0.04

Frequency

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

σ = 0.1

Frequency

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75
k 1

10 3

10 2

10 1

100

101

102

103

104

σ = 0.2

Frequency

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

100

101

102

103

104

Figure 12: Result of applying the filters in Figure 11 to a test image with different noise levels.

23

Figures 8 and 11 show the variance of the Fourier coefficients of a set of signals, and the correspond-
ing Wiener filters for different noise levels. When the noise level is low, the filter is concentrated
at the origin, which means that each entry of the estimated signal is almost equal to the noisy
measurement. As the noise rises, the filter suppresses the frequencies at which the signals in the
training set have less energy. For audio and natural images, this usually results in filtering out
high frequencies. In the time domain, this results in a filter that averages over more neighboring
entries to produce the estimate. This is apparent in the denoising examples shown in Figures 9,
10 and 12. 4

6 Convolutional neural networks for image denoising

In the lecture notes on Fourier we described how to denoise signals using a linear translation-
invariant filter. In the lecture notes on signal representations we showed that thresholding-based
techniques produce better results. These techniques apply a linear transformation to the signal,
which yields a sparse representation that is thresholded to remove the noise. In this section we
describe an approach to learn more general nonlinear denoisers based on deep learning.

Convolutional neural networks (CNNs) have been extremely successful in image classification [3].
They are translation-invariant nonlinear models implemented by a series of convolutions with
different filters interleaved by pointwise nonlinearities. This yields a model with a large number
of parameters, which are learned by minimizing a cost function related to the task of interest. In
the case of denoising, the cost function is of the form

min
W1,...,WL

n∑
j=1

∣∣∣∣y[j] −WLr
(
WL−1 · · · r

(
W2r

(
W1x

[j]
)))∣∣∣∣2

2
, (97)

where (y[1], x[1]), . . . , (y[n], x[n]) is a training set of n pairs of clean and noisy signals of dimension
N . The nonlinearity r is chosen to be a pointwise rectifier linear unit, for any ~v ∈ RN r(~v)[i] :=
max {0, ~v[i]} for 1 ≤ i ≤ N . The matrices W1, . . . , WL contain multiple different convolutional
filters each, which are applied to the output of the previous layer after rectification. CNNs can
also have additive parameters, but this is often unnecessary for image denoising (see [4]). The
number of parameters in these models is very large (around half a million), and therefore requires
a large training set of image patches (note however that these can be extracted from a set of just
a few hundred clean images). To make this tractable, stochastic gradient descent (see the notes
on convex optimization) is applied to solve the minimization problem. For more details we refer
to [5] (see also [1] for an excellent introduction to deep learning).

The results of deep-learning based denoising are compared in Figure 13 to the Wiener filtering,
and block-thresholding wavelet coefficients. The CNN produces significantly better results, re-
moving more noise while preserving image structure very effectively. In order to understand more
intuitively what the DNCNN is doing, we can consider the Jacobian matrix of the function

f(x) ≈ WLr (WL−1r (. . .W2r (W1x))) (98)

for a fixed image y. The Jacobian matrix provides a linear approximation to the function. The
rows of this matrix can be interpreted as denoising filters adapted to the specific structure of the

24

Noisy Wiener filtering

Wavelet block thresholding Convolutional neural network

Clean Noisy Wiener filtering
Wavelet block
thresholding

Convolutional
neural network

Figure 13: Denoising results for Wiener filtering, wavelet block thresholding and a convolutional
neural network for iid Gaussian noise with standard deviation σ := 0.04.

25

Wiener filter CNN filter CNN filter CNN filter CNN filter

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

Figure 14: The top row shows a Wiener filter together with rows of the Jacobian of a CNN, which
can be interpreted as nonlinear filters tied to the particular image. The second row shows the
location of the pixels corresponding to each of the rows of the Jacobian.

image (see [4] for more details on this visualization technique). Figure 14 shows some of these
filters for different locations in an image. The filters adapt to edges and other features.

References

[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[2] R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications
and Information Theory, 2(3):155–239, 2006.

[3] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[4] S. Mohan, Z. Kadkhodaie, E. P. Simoncelli, and C. Fernandez-Granda. Robust and interpretable
blind image denoising via bias-free convolutional neural networks. In International Conference on
Learning Representations, 2019.

[5] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a Gaussian denoiser: Residual learning
of deep CNN for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, 2017.

26

	Overview
	Translation
	Linear translation-invariant models
	Stationary signals
	Wiener filtering
	Convolutional neural networks for image denoising

