
Stationarity (blended lecture)

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda



Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Convolutions in probability



Review questions

1. Why do we almost never apply generic linear models to audio, images
and other high-dimensional signals?

2. What is the limitation of PCA in uncovering interesting structure in
audio, images and similar signals?
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Linear translation-invariant (LTI) function

A function F from CN to CN is linear if for any x , y ∈ CN and any α ∈ C

F(x + y) = F(x) + F(y)
F(αx) = αF(x)

and translation invariant if for any shift 0 ≤ s ≤ N − 1

F(x ↓s) = F(x) ↓s



What are the eigenvectors of discrete LTI functions?

1. Discrete linear-translation invariant function is equivalent to
convolution with impulse response

F (x) = x ∗ h

2. Convolution is equivalent to taking DFT, weighting DFT coefficients,
and applying inverse DFT

F(x) = 1
N
F ∗[N] diag(ĥ)F[N]x

=
1
N

N−1∑
k=0

ĥ[k]x̂ [k]ψk

3. This implies

F(ψk) = ĥ[k]ψk
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Continuous LTI functions

A function or system F that maps functions in [0, 1] to functions in [0, 1] is
linear if for any functions f , g and any α ∈ C

F(f + g) = F(f ) + F(g)
F(αf ) = αF(f )

and translation invariant if for any shift s ∈ R

F(f ↓s) = F(f ) ↓s

where f ↓s(t) = f (t − s) for all t ∈ [0, 1]



Are complex exponentials eigenvectors of continuous LTI
functions?

φk(t) := exp(i2πkt)

y := F (φk) ?

F(φ ↓sk ) = y ↓s

F(φ ↓sk ) = F(exp(−i2πks)φ ↓sk )

= exp(−i2πks)y

y(a− b) = exp(−i2πkb)y(a)

y(t) = y(0) exp(−i2πkt) Yes!
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Complexity of convolutions

I Complexity of circular convolution between N-dimensional vectors?

O(N2)

x ∗ y [j ] :=
N−1∑
s=0

x [s] y ↓s [j ] , 0 ≤ j ≤ N − 1

I Can we improve it?

Yes, to O(N logN) by using FFTs
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Complexity of convolutions

I Complexity of convolution between vectors of dimension M and N?

O(MN)

x ∗ y [j ] :=
M−1∑
s=0

x [s] y ↓s [j ] , 0 ≤ j ≤ N − 1

I In convolutional neural networks, we don’t use FFTs. Why?

M is very small



Complexity of convolutions

I Complexity of convolution between vectors of dimension M and N?
O(MN)

x ∗ y [j ] :=
M−1∑
s=0

x [s] y ↓s [j ] , 0 ≤ j ≤ N − 1

I In convolutional neural networks, we don’t use FFTs. Why?
M is very small



Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Convolutions in probability



Sum of independent random variables

Let x̃ and ỹ be independent discrete random variables with N possible
values

What is the distribution of z̃ := x̃ + ỹ

pz̃(z) =

P(z̃ = z)

=
M−1∑
j=0

P(x̃ = j , ỹ = z − j)

=
M−1∑
j=0

P(x̃ = j)P(ỹ = z − j)

=
M−1∑
j=0

px̃(j)pỹ (z − j)

pz̃ = px̃ ∗ pỹ
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Distribution of sums

Random quantities are often the result of adding many independent
components



Iterated convolutions

f1 c1 = f1 ∗ f1 c2 = c1 ∗ f1 c3 = c2 ∗ f1 c4 = c3 ∗ f1

c5 = c4 ∗ f1 c6 = c5 ∗ f1 c7 = c6 ∗ f1 c8 = c7 ∗ f1 c9 = c8 ∗ f1



Iterated convolutions

f2 c1 = f2 ∗ f2 c2 = c1 ∗ f2 c3 = c2 ∗ f2 c4 = c3 ∗ f2

c5 = c4 ∗ f2 c6 = c5 ∗ f2 c7 = c6 ∗ f2 c8 = c7 ∗ f2 c9 = c8 ∗ f2



Central limit theorem

Random quantities are often the result of adding many independent
components

Such quantities are Gaussian because iterated convolutions converge to
Gaussian functions
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