Stationarity (blended lecture)

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Convolutions in probability

Review questions

1. Why do we almost never apply generic linear models to audio, images and other high-dimensional signals?
2. What is the limitation of PCA in uncovering interesting structure in audio, images and similar signals?

Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Convolutions in probability

Linear translation-invariant (LTI) function

A function \mathcal{F} from \mathbb{C}^{N} to \mathbb{C}^{N} is linear if for any $x, y \in \mathbb{C}^{N}$ and any $\alpha \in \mathbb{C}$

$$
\begin{aligned}
\mathcal{F}(x+y) & =\mathcal{F}(x)+\mathcal{F}(y) \\
\mathcal{F}(\alpha x) & =\alpha \mathcal{F}(x)
\end{aligned}
$$

and translation invariant if for any shift $0 \leq s \leq N-1$

$$
\mathcal{F}\left(x^{\downarrow s}\right)=\mathcal{F}(x)^{\downarrow s}
$$

What are the eigenvectors of discrete LTI functions?

What are the eigenvectors of discrete LTI functions?

1. Discrete linear-translation invariant function is equivalent to convolution with impulse response

$$
\mathcal{F}(x)=x * h
$$

2. Convolution is equivalent to taking DFT, weighting DFT coefficients, and applying inverse DFT

$$
\begin{aligned}
\mathcal{F}(x) & =\frac{1}{N} F_{[N]}^{*} \operatorname{diag}(\hat{h}) F_{[N]} x \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \hat{h}[k] \hat{x}[k] \psi_{k}
\end{aligned}
$$

3. This implies

$$
\mathcal{F}\left(\psi_{k}\right)=\hat{h}[k] \psi_{k}
$$

Continuous LTI functions

A function or system \mathcal{F} that maps functions in $[0,1]$ to functions in $[0,1]$ is linear if for any functions f, g and any $\alpha \in \mathbb{C}$

$$
\begin{aligned}
\mathcal{F}(f+g) & =\mathcal{F}(f)+\mathcal{F}(g) \\
\mathcal{F}(\alpha f) & =\alpha \mathcal{F}(f)
\end{aligned}
$$

and translation invariant if for any shift $s \in \mathbb{R}$

$$
\mathcal{F}\left(f^{\downarrow s}\right)=\mathcal{F}(f)^{\downarrow s}
$$

where $f{ }^{\downarrow s}(t)=f(t-s)$ for all $t \in[0,1]$

Are complex exponentials eigenvectors of continuous LTI functions?

$$
\begin{aligned}
\phi_{k}(t) & :=\exp (i 2 \pi k t) \\
y & :=\mathcal{F}\left(\phi_{k}\right) ?
\end{aligned}
$$

Are complex exponentials eigenvectors of continuous LTI functions?

$$
\begin{aligned}
\phi_{k}(t) & :=\exp (i 2 \pi k t) \\
y & :=\mathcal{F}\left(\phi_{k}\right) ? \\
\mathcal{F}\left(\phi_{k}^{\downarrow s}\right) & =y^{\downarrow s} \\
\mathcal{F}\left(\phi_{k}^{\downarrow s}\right) & =\mathcal{F}\left(\exp (-i 2 \pi k s) \phi_{k}^{\downarrow s}\right) \\
& =\exp (-i 2 \pi k s) y \\
y(a-b) & =\exp (-i 2 \pi k b) y(a) \\
y(t) & =y(0) \exp (-i 2 \pi k t) \quad \text { Yes! }
\end{aligned}
$$

Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Complexity of convolutions

- Complexity of circular convolution between N-dimensional vectors?

$$
x * y[j]:=\sum_{s=0}^{N-1} x[s] y^{\downarrow s}[j], \quad 0 \leq j \leq N-1
$$

- Can we improve it?

Complexity of convolutions

- Complexity of circular convolution between N-dimensional vectors? $\mathcal{O}\left(N^{2}\right)$

$$
x * y[j]:=\sum_{s=0}^{N-1} x[s] y^{\downarrow s}[j], \quad 0 \leq j \leq N-1
$$

- Can we improve it? Yes, to $\mathcal{O}(N \log N)$ by using FFTs

Complexity of convolutions

- Complexity of convolution between vectors of dimension M and N ?

$$
x * y[j]:=\sum_{s=0}^{M-1} x[s] y^{\downarrow s}[j], \quad 0 \leq j \leq N-1
$$

- In convolutional neural networks, we don't use FFTs. Why?

Complexity of convolutions

- Complexity of convolution between vectors of dimension M and N ? $\mathcal{O}(M N)$

$$
x * y[j]:=\sum_{s=0}^{M-1} x[s] y^{\downarrow s}[j], \quad 0 \leq j \leq N-1
$$

- In convolutional neural networks, we don't use FFTs. Why?
M is very small

Review questions

Eigendecomposition of continuous linear-translation invariant functions

Complexity of convolutions

Convolutions in probability

Sum of independent random variables

Let \tilde{x} and \tilde{y} be independent discrete random variables with N possible values

What is the distribution of $\tilde{z}:=\tilde{x}+\tilde{y}$

$$
p_{\tilde{z}}(z)=
$$

Sum of independent random variables

Let \tilde{x} and \tilde{y} be independent discrete random variables with N possible values

What is the distribution of $\tilde{z}:=\tilde{x}+\tilde{y}$

$$
\begin{aligned}
p_{\tilde{z}}(z) & =\mathrm{P}(\tilde{z}=z) \\
& =\sum_{j=0}^{M-1} \mathrm{P}(\tilde{x}=j, \tilde{y}=z-j) \\
& =\sum_{j=0}^{M-1} \mathrm{P}(\tilde{x}=j) \mathrm{P}(\tilde{y}=z-j) \\
& =\sum_{j=0}^{M-1} p_{\tilde{x}}(j) p_{\tilde{y}}(z-j) \\
p_{\tilde{z}} & =p_{\tilde{x}} * p_{\tilde{y}}
\end{aligned}
$$

Distribution of sums

Random quantities are often the result of adding many independent components

Iterated convolutions

$c_{2}=c_{1} * f_{1}$
$c_{3}=c_{2} * f_{1}$
$c_{4}=c_{3} * f_{1}$
$c_{5}=c_{4} * f_{1}$
$c_{6}=c_{5} * f_{1}$
$c_{7}=c_{6} * f_{1}$
$c_{8}=c_{7} * f_{1}$
$c_{9}=c_{8} * f_{1}$

Iterated convolutions

$$
c_{2}=c_{1} * f_{2}
$$

$$
c_{3}=c_{2} * f_{2}
$$

$$
c_{4}=c_{3} * f_{2}
$$

$c_{5}=c_{4} * f_{2}$
$c_{6}=c_{5} * f_{2}$
$c_{7}=c_{6} * f_{2}$
$c_{8}=c_{7} * f_{2}$
$c_{9}=c_{8} * f_{2}$

Central limit theorem

Random quantities are often the result of adding many independent components

Such quantities are Gaussian because iterated convolutions converge to Gaussian functions

