

Stationary signals and PCA

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Covariance matrices

Principal component analysis

Discrete Fourier transform

Frequency transformations in multiple dimensions

Linear translation-invariant models and convolution

Motivation: Covariance between pixels in an image

Covariance with pixel i in 16th row

Covariance with pixel i in 16th row

Rows of covariance matrix

Toy model of 1D piecewise constant signals

Sample covariance matrix

Stationary signals

- $\tilde{\boldsymbol{x}}$ is wide-sense or weak-sense stationary if
 - 1. it has a constant mean

$$E(\tilde{x}[j]) = \mu, \quad 1 \le j \le N$$

2. there is an *autocovariance* function $a_{\tilde{x}}$ such that

 $\operatorname{Cov}\left(\tilde{x}[j_1]\tilde{x}[j_2]\right) = \operatorname{ac}_{\tilde{x}}(j_2 - j_1 \operatorname{mod} N), \quad 0 \leq j_1, j_2 \leq N - 1$

i.e. it has translation-invariant covariance

Autocovariance

For any
$$j$$
, $\operatorname{ac}_{\tilde{x}}(j) = \operatorname{ac}_{\tilde{x}}(-j) = \operatorname{ac}_{\tilde{x}}(N-j)$

$$\begin{split} \Sigma_{\tilde{x}} &= \begin{bmatrix} a_{\tilde{x}} & a_{\tilde{x}}^{\downarrow 1} & a_{\tilde{x}}^{\downarrow 2} & \cdots & a_{\tilde{x}}^{\downarrow N-1} \end{bmatrix} \\ &= \begin{bmatrix} \mathsf{ac}_{\tilde{x}}(0) & \mathsf{ac}_{\tilde{x}}(N-1) & \cdots & \mathsf{ac}_{\tilde{x}}(1) \\ \mathsf{ac}_{\tilde{x}}(1) & \mathsf{ac}_{\tilde{x}}(0) & \cdots & \mathsf{ac}_{\tilde{x}}(2) \\ & & \ddots & \\ \mathsf{ac}_{\tilde{x}}(N-1) & \mathsf{ac}_{\tilde{x}}(N-2) & \cdots & \mathsf{ac}_{\tilde{x}}(0) \end{bmatrix} \end{split}$$

where

$$a_{\tilde{x}} := \begin{bmatrix} \mathsf{ac}_{\tilde{x}}(0) \\ \mathsf{ac}_{\tilde{x}}(1) \\ \mathsf{ac}_{\tilde{x}}(2) \\ \cdots \end{bmatrix}$$

Each column vector is a unit circular shift of previous column

$$\begin{bmatrix} a & d & c & b \\ b & a & d & c \\ c & b & a & d \\ d & c & b & a \end{bmatrix} = \begin{bmatrix} h & h^{\downarrow 1} & h^{\downarrow 2} & h^{\downarrow 3} \end{bmatrix}$$

Sample covariance matrix of piecewise constant signals

Rows of covariance matrix of image dataset (reshaped)

Rows of covariance matrix of image dataset (reshaped)

Rows of covariance matrix of image dataset (reshaped)

Applying a circulant matrix

Any circulant matrix $C \in \mathbb{C}^{N imes N}$ and any vector $x \in \mathbb{C}^N$

$$Cx = \sum_{s=0}^{N-1} x[s] h^{\downarrow s}$$
$$= h * x$$
$$= \frac{1}{N} F_{[N]}^* \operatorname{diag}(\hat{h}) F_{[N]} x$$

This is an eigendecomposition!

Eigendecomposition of circulant matrix

$$C := rac{1}{N} F^*_{[N]} \operatorname{diag}(\hat{h}) F_{[N]}$$

where $F_{[N]}$ is the DFT matrix and \hat{h} is the DFT of the first column

Let \tilde{x} be wide-sense stationary with autocovariance vector $a_{\tilde{x}}$

The eigendecomposition of the covariance matrix of \tilde{x} equals

$$\Sigma_{\widetilde{x}} = egin{bmatrix} a_{\widetilde{x}}^{\downarrow 1} & a_{\widetilde{x}}^{\downarrow 2} & \cdots & a_{\widetilde{x}}^{\downarrow N-1} \end{bmatrix} \ &= rac{1}{N} F^* \operatorname{diag}(\widehat{a}_{\widetilde{x}}) F$$

Toy model of 1D piecewise constant signals

CIFAR-10 images

Principal directions tend to be sinusoidal

This suggests using 2D sinusoids for dimensionality reduction

JPEG compresses images using discrete cosine transform (DCT):

- 1. Image is divided into 8 \times 8 patches
- 2. Each DCT band is quantized differently (more bits for lower frequencies)

DCT basis vectors

_	4	A	N	w	W	W	W
	10	0	O(88	000	000	W
	5	\mathbf{R}	98	88	88	88	88
		8	88	88	888	88	
		8	88	88	88	88	
		8		**		::	
				88	888	88	*

Projection of each 8x8 block onto first DCT coefficients

Stationary signals have translation-invariant statistics

Their covariance matrix are circulant

Circulant matrices have sinusoidal eigendecompositions

PCA on stationary signals yields sinusoidal principal directions