Stationary signals and PCA

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Covariance matrices
Principal component analysis
Discrete Fourier transform

Frequency transformations in multiple dimensions

Linear translation-invariant models and convolution

Motivation: Covariance between pixels in an image

Covariance with pixel i in 16th row

Covariance with pixel i in 16th row

$$
i=18
$$

Rows of covariance matrix

$i=28$
$i=32$

Principal directions

Principal directions

Principal directions

Toy model of 1D piecewise constant signals

Sample covariance matrix

Principal directions

Principal directions

Stationary signals

\tilde{x} is wide-sense or weak-sense stationary if

1. it has a constant mean

$$
\mathrm{E}(\tilde{x}[j])=\mu, \quad 1 \leq j \leq N
$$

2. there is an autocovariance function $a_{\tilde{x}}$ such that

$$
\operatorname{Cov}\left(\tilde{x}\left[j_{1}\right] \tilde{x}\left[j_{2}\right]\right)=\operatorname{ac}_{\tilde{x}}\left(j_{2}-j_{1} \bmod N\right), \quad 0 \leq j_{1}, j_{2} \leq N-1
$$

i.e. it has translation-invariant covariance

Autocovariance

For any $j, \operatorname{ac}_{\tilde{x}}(j)=\operatorname{ac}_{\tilde{x}}(-j)=\operatorname{ac}_{\tilde{x}}(N-j)$

$$
\begin{aligned}
\Sigma_{\tilde{x}} & =\left[\begin{array}{lllll}
a_{\tilde{x}} & a_{\tilde{x}}^{\downarrow 1} & a_{\tilde{x}}^{\downarrow 2} & \cdots & a_{\tilde{\chi}}^{\downarrow N-1}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\mathrm{ac}_{\tilde{\chi}}(0) & \mathrm{ac}_{\tilde{x}}(N-1) & \cdots & \mathrm{ac}_{\tilde{x}}(1) \\
\mathrm{ac}_{\tilde{x}}(1) & \mathrm{ac}_{\tilde{x}}(0) & \cdots & \mathrm{c}_{\tilde{x}}(2) \\
\mathrm{ac}_{\tilde{x}}(N-1) & \mathrm{ac}_{\tilde{x}}(N-2) & \cdots & \mathrm{ac}_{\tilde{x}}(0)
\end{array}\right]
\end{aligned}
$$

where

$$
a_{\tilde{x}}:=\left[\begin{array}{c}
\mathrm{ac}_{\tilde{x}}(0) \\
\mathrm{ac}_{\tilde{x}}(1) \\
\mathrm{ac}_{\tilde{x}}(2) \\
\cdots
\end{array}\right]
$$

Circulant matrix

Each column vector is a unit circular shift of previous column

$$
\left[\begin{array}{llll}
a & d & c & b \\
b & a & d & c \\
c & b & a & d \\
d & c & b & a
\end{array}\right]=\left[\begin{array}{llll}
h & h^{\downarrow 1} & h^{\downarrow 2} & h^{\downarrow 3}
\end{array}\right]
$$

Sample covariance matrix of piecewise constant signals

Rows of covariance matrix of image dataset (reshaped)

Rows of covariance matrix of image dataset (reshaped)

Rows of covariance matrix of image dataset (reshaped)

Applying a circulant matrix

Any circulant matrix $C \in \mathbb{C}^{N \times N}$ and any vector $x \in \mathbb{C}^{N}$

$$
\begin{aligned}
C x & =\sum_{s=0}^{N-1} x[s] h^{\downarrow s} \\
& =h * x \\
& =\frac{1}{N} F_{[N]}^{*} \operatorname{diag}(\hat{h}) F_{[N]} x
\end{aligned}
$$

This is an eigendecomposition!

Eigendecomposition of circulant matrix

$$
C:=\frac{1}{N} F_{[N]}^{*} \operatorname{diag}(\hat{h}) F_{[N]}
$$

where $F_{[N]}$ is the DFT matrix and \hat{h} is the DFT of the first column

PCA of stationary signals

Let \tilde{x} be wide-sense stationary with autocovariance vector $a_{\tilde{x}}$
The eigendecomposition of the covariance matrix of \tilde{x} equals

$$
\begin{aligned}
\Sigma_{\tilde{x}} & =\left[\begin{array}{llll}
a_{\tilde{x}} & a_{\tilde{x}}^{\downarrow 1} & a_{\tilde{x}}^{\downarrow{ }^{\downarrow}} & \cdots a_{\tilde{x}}^{\downarrow N-1}
\end{array}\right] \\
& =\frac{1}{N} F^{*} \operatorname{diag}\left(\hat{a}_{\tilde{x}}\right) F
\end{aligned}
$$

Toy model of 1D piecewise constant signals

Principal directions

Principal directions

CIFAR-10 images

Principal directions

Principal directions

Principal directions

PCA of natural images

Principal directions tend to be sinusoidal

This suggests using 2D sinusoids for dimensionality reduction
JPEG compresses images using discrete cosine transform (DCT):

1. Image is divided into 8×8 patches
2. Each DCT band is quantized differently (more bits for lower frequencies)

DCT basis vectors

Projection of each 8×8 block onto first DCT coefficients

50

What have we learned?

Stationary signals have translation-invariant statistics

Their covariance matrix are circulant

Circulant matrices have sinusoidal eigendecompositions
PCA on stationary signals yields sinusoidal principal directions

