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Prerequisites

Covariance matrices

Principal component analysis

Discrete Fourier transform

Frequency transformations in multiple dimensions

Linear translation-invariant models and convolution



Motivation: Covariance between pixels in an image



Covariance with pixel i in 16th row
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Covariance with pixel i in 16th row
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Rows of covariance matrix

i = 20 i = 24 i = 28 i = 32
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Toy model of 1D piecewise constant signals
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Stationary signals

x̃ is wide-sense or weak-sense stationary if

1. it has a constant mean

E (x̃ [j ]) = µ, 1 ≤ j ≤ N

2. there is an autocovariance function ax̃ such that

Cov (x̃ [j1]x̃ [j2]) = acx̃(j2 − j1 modN), 0 ≤ j1, j2 ≤ N − 1

i.e. it has translation-invariant covariance



Autocovariance

For any j , acx̃(j) = acx̃(−j) = acx̃(N − j)

Σx̃ =
[
ax̃ a ↓1x̃ a ↓2x̃ · · · a ↓N−1

x̃

]

=


acx̃(0) acx̃(N − 1) · · · acx̃(1)
acx̃(1) acx̃(0) · · · acx̃(2)

· · ·
acx̃(N − 1) acx̃(N − 2) · · · acx̃(0)


where

ax̃ :=


acx̃(0)
acx̃(1)
acx̃(2)
· · ·





Circulant matrix

Each column vector is a unit circular shift of previous column


a d c b
b a d c
c b a d
d c b a

 =
[
h h ↓1 h ↓2 h ↓3

]



Sample covariance matrix of piecewise constant signals

0.1

0.2

0.3

0.4

0.5



Rows of covariance matrix of image dataset (reshaped)
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Rows of covariance matrix of image dataset (reshaped)
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Rows of covariance matrix of image dataset (reshaped)
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Applying a circulant matrix

Any circulant matrix C ∈ CN×N and any vector x ∈ CN

Cx =
N−1∑
s=0

x [s] h ↓s

= h ∗ x

=
1
N
F ∗[N] diag(ĥ)F[N]x

This is an eigendecomposition!



Eigendecomposition of circulant matrix

C :=
1
N
F ∗[N] diag(ĥ)F[N]

where F[N] is the DFT matrix and ĥ is the DFT of the first column



PCA of stationary signals

Let x̃ be wide-sense stationary with autocovariance vector ax̃

The eigendecomposition of the covariance matrix of x̃ equals

Σx̃ =
[
ax̃ a ↓1x̃ a ↓2x̃ · · · a ↓N−1

x̃

]
=

1
N
F ∗ diag(âx̃)F



Toy model of 1D piecewise constant signals



Principal directions

1 2 3 4 5

6 7 8 9 10



Principal directions

15 20 25 30 40

50 60 70 80 90



CIFAR-10 images
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PCA of natural images

Principal directions tend to be sinusoidal

This suggests using 2D sinusoids for dimensionality reduction

JPEG compresses images using discrete cosine transform (DCT):

1. Image is divided into 8× 8 patches
2. Each DCT band is quantized differently (more bits for lower

frequencies)



DCT basis vectors



Projection of each 8x8 block onto first DCT coefficients
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What have we learned?

Stationary signals have translation-invariant statistics

Their covariance matrix are circulant

Circulant matrices have sinusoidal eigendecompositions

PCA on stationary signals yields sinusoidal principal directions


