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Prerequisites

Calculus (multivariate functions, gradients)
Linear algebra (norms)
Sparse regression via the lasso

Convexity



Epigraph

The epigraph of f : R” — R is a set in R"*1

x[1]
epi (f) := {x f (|:[]]> <X[n+1]}



Epigraph

epi ()




Supporting hyperplane

A hyperplane H is a supporting hyperplane of a set S at x if

> H and S intersect at x
» S is contained in one of the half-spaces bounded by H



Supporting hyperplane




Convexity

A function f : R" — R is convex if and only if its epigraph has a
supporting hyperplane at every point

It is strictly convex if and only for all x € R" it only intersects
with the supporting hyperplane at one point



Subgradients

The subgradient of f: R” — R at x € R" is a vector g € R" such that
fy)>f(x)+g" (y—x), forallyeR"

The hyperplane

y[1]
He = {yy[n+1]f(X)+gT ({] X)}
yln]

is a supporting hyperplane of the epigraph of f at [f();)}



Subgradients




Subgradient of differentiable function

If a function is differentiable, the only subgradient at each point is
the gradient



Proof

Assume g is a subgradient at x, for any « >0

f(x+ae)>f(x)+g ae

=f(x) +gli]a
fF(x)<f(x—ae)+glae
=f(x—ae)+gli]a

Combining both inequalities

f(x)—f(x—ae)

[0 [0

f(x)

Letting o — 0, implies g[i] = %X[]




Optimality condition for nondifferentiable functions

x is a minimum of f if and only if the zero vector is a subgradient of f at x

Fly) =f(x)+07 (y —x)
= f(x)

forall y € R"

Under strict convexity the minimum is unique



Sum of subgradients

Let g1 and g be subgradientsat x e R" of f : R" - Rand H: R" - R
g = g1+g& is a subgradient of f := f; + £ at x

Proof: For any y € R"

fly)=hy)+H()
Zfl(X)+g1T(y—X)+f2(Y)+g2T(y—X)
>f(x)+g" (y—x)



Subgradient of scaled function

Let g1 be a subgradient at x e R" of f; : R" - R
For any a > 0 g» := ag; is a subgradient of f; := af; at x

Proof: For any y € R”

f2(y) = afi (y)
>a(A()+a (v-x)

>hHh(x)+& (y—x)



Subdifferential of absolute value

At x # 0, f (x) = |x| is differentiable, so g = sign (x)

At x = 0, we need

fO+y)>f(0)+g(y—0)

ly| > gy

Holds if and only if |g] <1



Subdifferential of absolute value




Subdifferential of #; norm

g is a subgradient of the £; norm at x € R" if and only if

glil =sign(x[]) it x[]#0

gl <1 if x[i] =0



Proof (one direction)

Assume g[i] is a subgradient of |-| at |x[i]| for 1 < i <n

For any y € R”

Iyl =Dy [l
i=1

> |x[l + glil (v [1] = x[1)

=1
=|xll; +&7 (y —x)



Subdifferential of #; norm




Subdifferential of #; norm
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Subdifferential of #; norm

OO0
R

0
0

0
Q
O
W

&
o

v

O
0

X
X
Q
X

Q

0
"
"
o

X

03“:‘:‘:‘“".
”:::0': 4.9
0,0.0,0,0,0 909,
’0’."”& WPV TION

Q
)
X

0
2
%

0
"
"
%

000
0
0




What have we learned?

Definition of subgradients
Optimality condition for nondifferentiable convex functions

Subgradients of #; norm



