

Subgradients

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Calculus (multivariate functions, gradients)

Linear algebra (norms)

Sparse regression via the lasso

Convexity

Epigraph

The epigraph of $f: \mathbb{R}^n \to \mathbb{R}$ is a set in \mathbb{R}^{n+1}

$$\operatorname{\mathsf{epi}}(f) := \left\{ x \mid f\left(egin{bmatrix} x[1] \\ \cdots \\ x[n] \end{bmatrix} \right) \leq x[n+1] \right\}$$

Epigraph

Supporting hyperplane

A hyperplane ${\mathcal H}$ is a supporting hyperplane of a set ${\mathcal S}$ at x if

- \triangleright \mathcal{H} and \mathcal{S} intersect at x
- \triangleright S is contained in one of the half-spaces bounded by ${\cal H}$

Supporting hyperplane

Convexity

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its epigraph has a supporting hyperplane at every point

It is strictly convex if and only for all $x \in \mathbb{R}^n$ it only intersects with the supporting hyperplane at one point

Subgradients

The subgradient of $f: \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ is a vector $g \in \mathbb{R}^n$ such that

$$f(y) \ge f(x) + g^{T}(y - x)$$
, for all $y \in \mathbb{R}^{n}$

The hyperplane

$$\mathcal{H}_g := \left\{ y \mid y[n+1] = f(x) + g^T \left(\begin{bmatrix} y[1] \\ \cdots \\ y[n] \end{bmatrix} - x \right) \right\}$$

is a supporting hyperplane of the epigraph of f at $\begin{vmatrix} x \\ f(x) \end{vmatrix}$

${\sf Subgradients}$

Subgradient of differentiable function

If a function is differentiable, the only subgradient at each point is the gradient

Proof

Assume g is a subgradient at x, for any $\alpha \geq 0$

$$f(x + \alpha e_i) \ge f(x) + g^T \alpha e_i$$

$$= f(x) + g[i] \alpha$$

$$f(x) \le f(x - \alpha e_i) + g^T \alpha e_i$$

$$= f(x - \alpha e_i) + g[i] \alpha$$

Combining both inequalities

$$\frac{f(x) - f(x - \alpha e_i)}{\alpha} \le g[i] \le \frac{f(x + \alpha e_i) - f(x)}{\alpha}$$

Letting $\alpha \to 0$, implies $g[i] = \frac{\partial f(x)}{\partial x[i]}$

Optimality condition for nondifferentiable functions

x is a minimum of f if and only if the zero vector is a subgradient of f at x

$$f(y) \ge f(x) + \vec{0}^T (y - x)$$

= $f(x)$

for all $y \in \mathbb{R}^n$

Under strict convexity the minimum is unique

Sum of subgradients

Let g_1 and g_2 be subgradients at $x \in \mathbb{R}^n$ of $f_1 : \mathbb{R}^n \to \mathbb{R}$ and $f_2 : \mathbb{R}^n \to \mathbb{R}$ $g := g_1 + g_2$ is a subgradient of $f := f_1 + f_2$ at x

Proof: For any $y \in \mathbb{R}^n$

$$f(y) = f_1(y) + f_2(y) \ge f_1(x) + g_1^T(y - x) + f_2(y) + g_2^T(y - x) \ge f(x) + g^T(y - x)$$

Subgradient of scaled function

Let g_1 be a subgradient at $x \in \mathbb{R}^n$ of $f_1 : \mathbb{R}^n \to \mathbb{R}$

For any $\alpha \geq 0$ $g_2 := \alpha g_1$ is a subgradient of $f_2 := \alpha f_1$ at x

Proof: For any $y \in \mathbb{R}^n$

$$f_{2}(y) = \alpha f_{1}(y)$$

$$\geq \alpha \left(f_{1}(x) + g_{1}^{T}(y - x) \right)$$

$$\geq f_{2}(x) + g_{2}^{T}(y - x)$$

Subdifferential of absolute value

At
$$x \neq 0$$
, $f(x) = |x|$ is differentiable, so $g = sign(x)$

At x = 0, we need

$$f(0+y) \ge f(0) + g(y-0)$$

$$|y| \ge gy$$

Holds if and only if $|g| \leq 1$

Subdifferential of absolute value

g is a subgradient of the ℓ_1 norm at $x \in \mathbb{R}^n$ if and only if

$$g[i] = \operatorname{sign}(x[i])$$
 if $x[i] \neq 0$

$$|g[i]| \le 1 \qquad \qquad \text{if } x[i] = 0$$

Proof (one direction)

Assume g[i] is a subgradient of $|\cdot|$ at |x[i]| for $1 \le i \le n$

For any
$$y \in \mathbb{R}^n$$

$$||y||_{1} = \sum_{i=1}^{n} |y[i]|$$

$$\geq \sum_{i=1}^{n} |x[i]| + g[i] (y[i] - x[i])$$

$$= ||x||_{1} + g^{T} (y - x)$$

What have we learned?

Definition of subgradients

Optimality condition for nondifferentiable convex functions

Subgradients of ℓ_1 norm