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Prerequisites

Calculus (multivariate functions, gradients)

Linear algebra (norms)

Sparse regression via the lasso

Convexity



Epigraph

The epigraph of f : Rn → R is a set in Rn+1

epi (f ) :=

x | f

x [1]· · ·
x [n]

 ≤ x [n + 1]


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Supporting hyperplane

A hyperplane H is a supporting hyperplane of a set S at x if

I H and S intersect at x
I S is contained in one of the half-spaces bounded by H



Supporting hyperplane



Convexity

A function f : Rn → R is convex if and only if its epigraph has a
supporting hyperplane at every point

It is strictly convex if and only for all x ∈ Rn it only intersects
with the supporting hyperplane at one point



Subgradients

The subgradient of f : Rn → R at x ∈ Rn is a vector g ∈ Rn such that

f (y) ≥ f (x) + gT (y − x) , for all y ∈ Rn

The hyperplane

Hg :=

y | y [n + 1] = f (x) + gT

y [1]· · ·
y [n]

− x


is a supporting hyperplane of the epigraph of f at

[
x

f (x)

]



Subgradients



Subgradient of differentiable function

If a function is differentiable, the only subgradient at each point is
the gradient



Proof

Assume g is a subgradient at x , for any α ≥ 0

f (x + α ei ) ≥ f (x) + gTα ei

= f (x) + g [i ]α

f (x) ≤ f (x − α ei ) + gTα ei

= f (x − α ei ) + g [i ]α

Combining both inequalities

f (x)− f (x − α ei )

α
≤ g [i ] ≤ f (x + α ei )− f (x)

α

Letting α→ 0, implies g [i ] = ∂f (x)
∂x[i ]



Optimality condition for nondifferentiable functions

x is a minimum of f if and only if the zero vector is a subgradient of f at x

f (y) ≥ f (x) +~0T (y − x)

= f (x)

for all y ∈ Rn

Under strict convexity the minimum is unique



Sum of subgradients

Let g1 and g2 be subgradients at x ∈ Rn of f1 : Rn → R and f2 : Rn → R

g := g1+g2 is a subgradient of f := f1 + f2 at x

Proof: For any y ∈ Rn

f (y) = f1 (y) + f2 (y)

≥ f1 (x) + g T
1 (y − x) + f2 (y) + g T

2 (y − x)

≥ f (x) + g T (y − x)



Subgradient of scaled function

Let g1 be a subgradient at x ∈ Rn of f1 : Rn → R

For any α ≥ 0 g2 := αg1 is a subgradient of f2 := αf1 at x

Proof: For any y ∈ Rn

f2 (y) = αf1 (y)

≥ α
(
f1 (x) + g T

1 (y − x)
)

≥ f2 (x) + g T
2 (y − x)



Subdifferential of absolute value

At x 6= 0, f (x) = |x | is differentiable, so g = sign (x)

At x = 0, we need

f (0+ y) ≥ f (0) + g (y − 0)

|y | ≥ gy

Holds if and only if |g | ≤ 1



Subdifferential of absolute value

f(x) = |x|



Subdifferential of `1 norm

g is a subgradient of the `1 norm at x ∈ Rn if and only if

g [i ] = sign (x [i ]) if x [i ] 6= 0

|g [i ]| ≤ 1 if x [i ] = 0



Proof (one direction)

Assume g [i ] is a subgradient of |·| at |x [i ]| for 1 ≤ i ≤ n

For any y ∈ Rn

||y ||1 =
n∑

i=1

|y [i ]|

≥
n∑

i=1

|x [i ]|+ g [i ] (y [i ]− x [i ])

= ||x ||1 + g T (y − x)



Subdifferential of `1 norm



Subdifferential of `1 norm



Subdifferential of `1 norm



What have we learned?

Definition of subgradients

Optimality condition for nondifferentiable convex functions

Subgradients of `1 norm


