Thresholding

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda
Prerequisites

Short-time Fourier transform

Wavelets
Denoising

In real applications measurements are usually corrupted by noise

Simple, yet useful, model:

\[
data = \text{signal} + \text{noise}
\]

Denoising is the problem of estimating the signal from the noisy data
Noisy image
Wavelet coefficients of noisy image
Wavelet coefficients of clean image
What do you notice?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense
Why are wavelet coefficients of noisy image dense?

If \tilde{z} is Gaussian with mean μ and covariance matrix Σ, then for any A, $A\tilde{z}$ is Gaussian with mean $A\mu$ and covariance matrix $A\Sigma A^T$.

For wavelet transform, A is orthogonal so if $\Sigma = I$, then

$$\Sigma_{A\tilde{z}} = AA^T = I$$
How can we exploit this to denoise?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense
How would you denoise this signal?
Thresholding

Hard-thresholding operator

$$\mathcal{H}_\eta (v) [j] := \begin{cases} v [j] & \text{if } |v [j]| > \eta \\ 0 & \text{otherwise} \end{cases}$$
Denoising via hard thresholding
Denoising via hard thresholding

Given data y and a sparsifying linear transform A

1. Compute coefficients Ay

2. Apply the hard-thresholding operator $\mathcal{H}_\eta : \mathbb{C}^N \rightarrow \mathbb{C}^N$ to Ay

3. Invert the transform

$$x_{\text{est}} := L\mathcal{H}_\eta(Ay),$$

where L is a left inverse of A
Noisy image
Noisy wavelet coefficients
Thresholded wavelet coefficients
Denoised image
Clean image
Comparison

Clean | Noisy | Linear denoiser | Wavelet thresholding
Noisy speech signal
STFT coefficients of noisy data
Speech signal
Thresholded STFT coefficients
Denoised signal

Time (s)

4.30 4.35 4.40 4.45 4.50 4.55 4.60 4.65 4.70

7500
5000
2500
0
2500
5000
7500
Can we do better?

The denoised signal sounds quite strange...
Thresholded STFT coefficients
Clean STFT coefficients
Thresholded wavelet coefficients
Clean wavelet coefficients
How can we exploit structure in the coefficients?

In clean signal coefficients are clustered

Idea: Threshold them in blocks
Block thresholding

Threshold according to block of surrounding coefficients \mathcal{I}_j

$$B_\eta (\nu) [j] := \begin{cases}
\nu [j] & \text{if } j \in \mathcal{I}_j \text{ such that } \| \nu_{\mathcal{I}_j} \|_2 > \eta, \\
0 & \text{otherwise}
\end{cases}$$
Denoising via block thresholding

Given data y and a sparsifying linear transform A

1. Compute coefficients Ay

2. Apply the block-thresholding operator $\mathcal{H}_\eta : \mathbb{C}^N \rightarrow \mathbb{C}^N$ to Ay

3. Invert the transform

$$x_{\text{est}} := L B_\eta (Ay),$$

where L is a left inverse of A
Thresholded STFT coefficients
Block-thresholded STFT coefficients (block of length 5)
Thresholding

[Graph showing signal and noisy data with STFT thresholding]
Noisy wavelet coefficients
Thresholded wavelet coefficients
Block thresholded wavelet coefficients
Denoised signal
Comparison

Clean | Noisy | Linear denoising | Wavelet thresholding | Wavelet block thresholding
What have we learned

How to denoise using sparsifying transforms such as wavelets and the STFT

How to adapt thresholding to signal structure