



#### Thresholding

#### DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

#### Prerequisites

Short-time Fourier transform

Wavelets

In real applications measurements are usually corrupted by noise Simple, yet useful, model:

 $\mathsf{data} = \mathsf{signal} + \mathsf{noise}$ 

Denoising is the problem of estimating the signal from the noisy data

# Noisy image



# Image



#### Wavelet coefficients of noisy image



# Wavelet coefficients of clean image



#### What do you notice?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense

### Why are wavelet coefficients of noisy image dense?

If  $\tilde{z}$  is Gaussian with mean  $\mu$  and covariance matrix  $\Sigma$ , then for any A,  $A\tilde{z}$  is Gaussian with mean  $A\mu$  and covariance matrix  $A\Sigma A^T$ 

For wavelet transform, A is orthogonal so if  $\Sigma = I$ , then

$$\Sigma_{A\tilde{z}} = AA^T = I$$

How can we exploit this to denoise?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense

#### How would you denoise this signal?



### Thresholding

Hard-thresholding operator

$$\mathcal{H}_{\eta}\left(v
ight)\left[j
ight] := egin{cases} v\left[j
ight] & ext{if } \left|v\left[j
ight]
ight| > \eta \ 0 & ext{otherwise} \end{cases}$$

#### Denoising via hard thresholding



### Denoising via hard thresholding

Given data y and a sparsifying linear transform A

- 1. Compute coefficients Ay
- 2. Apply the hard-thresholding operator  $\mathcal{H}_{\eta} : \mathbb{C}^{N} \to \mathbb{C}^{N}$  to Ay
- 3. Invert the transform

$$x_{\mathsf{est}} := \mathcal{LH}_{\eta}(\mathcal{A}y),$$

where L is a left inverse of A

# Noisy image



# Noisy wavelet coefficients



# Thresholded wavelet coefficients



# Denoised image



# Clean image



# Comparison





#### Linear denoiser



#### Wavelet thresholding



### Noisy speech signal



#### STFT coefficients of noisy data



## Speech signal



### Thresholded STFT coefficients



#### Denoised signal



#### Denoised signal



#### Can we do better?

The denoised signal sounds quite strange...

### Thresholded STFT coefficients



### Clean STFT coefficients



# Thresholded wavelet coefficients



### Clean wavelet coefficients



How can we exploit structure in the coefficients?

In clean signal coefficients are clustered

Idea: Threshold them in blocks

### Block thresholding

Threshold according to block of surrounding coefficients  $\mathcal{I}_j$ 

$$\mathcal{B}_{\eta}\left(v\right)\left[j\right] := \begin{cases} v\left[j\right] & \text{if } j \in \mathcal{I}_{j} \quad \text{such that } \left|\left|v_{\mathcal{I}_{j}}\right|\right|_{2} > \eta, , \\ 0 & \text{otherwise} \end{cases}$$

### Denoising via block thresholding

Given data y and a sparsifying linear transform A

- 1. Compute coefficients Ay
- 2. Apply the block-thresholding operator  $\mathcal{H}_{\eta}: \mathbb{C}^{N} \to \mathbb{C}^{N}$  to Ay
- 3. Invert the transform

$$x_{\mathsf{est}} := L \mathcal{B}_{\eta} (Ay),$$

where L is a left inverse of A

### Noisy STFT coefficients



### Thresholded STFT coefficients



## Block-thresholded STFT coefficients (block of length 5)



### Thresholding



### Block thresholding



# Noisy wavelet coefficients



# Thresholded wavelet coefficients



# Block thresholded wavelet coefficients



# Denoised signal



## Comparison



How to denoise using sparsifying transforms such as wavelets and the STFT

How to adapt thresholding to signal structure