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Prerequisites

Mean-squared error estimation
Ordinary least squares (OLS)

OLS coefficient analysis



Quick recap

> Regression: Estimating response y from features X

» Optimal estimator in mean squared error is conditional mean E(y | X)
» Unless features are very few, we can't compute it

» Linear models are interpretable and often very effective

» OLS estimator: yors(X) := % BoLs (assuming everything is centered)
n 2
Povs = arg mﬁin > ()/i - X;Tﬁ)
i=1

where (y1,x1), ..., (¥n, Xn) are training data



Quick recap

Analysis assuming data are indeed generated by linear model
y= )?Tﬁtrue +2Z

Z is Gaussian noise with standard deviation o

If we have access to joint distribution of X and ¥, linear estimation achieves
an error of o

But we never have access to true distribution, only to samples (y1,x1), ...,
(}/ny X,-,)



Temperature prediction via linear regression
» Dataset of hourly temperatures measured at weather stations all over
the US
» Goal: Predict temperature in Yosemite from other temperatures
> Response: Temperature in Yosemite
» Features: Temperatures in 133 other stations (p = 133) in 2015
> Test set: 103 measurements

» Additional test set: All measurements from 2016



Goal: Understand this
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Model for training data

~ T -
Ytrain - = X 5true + Ztrain

» Feature matrix X € RP*" is deterministic
» Coefficients Birue € RP are deterministic

» Noise Zipin is an n-dimensional iid Gaussian vector with zero mean
and variance o2



OLS coefficient estimate

BOLS = ﬁtrue + US_l VTEtrain

Gaussian with mean Syye and covariance matrix o2US—2UT
Error depends on singular values of feature matrix
If singular values are small, error explodes!

What about the response?






From a linear algebra perspective

xn[l] xn[2] -+ xa[p]

xi[1] x[2] - x[p]] [Ba
XTg= {X?.[?] ol X%["]] H

Bp
x1[1] x1[2] x1[p]
= |20 2 g, 2
sall] al2] ol
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Subspace




Linear model




Linear model

Ytrain




OLS estimate is a projection

Ytrain




Training error

}7train - XTBOLS = }7train - Prow(X) }7train
= XTﬁtrue + Ztrain - Prow(X) (XTBtrue + Etrain)
= XTﬁtrue + Ztrain - XTﬁtrue - Prow(X) Etrain

= 73r()W(X)J- Ztrain



Goal: Characterize average training square error

_ 101, . 2
Etzrain = E Ytrain — XTBOLS‘ )2

2

1 .
= ; H’Prow(X)J— Ztrain

Requires studying the projection of an iid Gaussian vector on a subspace

In R™ what fraction of variance is captured by subspace of dimension

n—p? =P




Average training square error

2
T~
VL Ztrain

HPrOW(x)L Ztrain

= Ztraln VL VJ_ VL VJ_ Ztrain
’ 2

fotra;n is an n — p dimensional Gaussian vector with covariance matrix

T~
VJ_ Ztrain

_\/Ts.

ZVIZtrain - €L ZZtrain VJ—
=V/sIv,
= o2/

It's an iid Gaussian vector!



/5 norm of d-dimensional iid standard Gaussian vector w



/5 norm of d-dimensional iid standard Gaussian vector w

B |(1w18)°| ~E [(i v"v[i]2>2]

= Z > E(WliPwi)
i=1 j=1
d d—1 d
=2 E@i)+23 > E Cing
i=1 i=1 j=i+1
=3d+d(d—1) (4th moment of standard Gaussian = 3)
= d(d +2)



¢ norm of d-dimensional iid standard Gaussian vector

As d grows, std / mean ratio of squared ¢» norm scales as 1/v/d

Consequently squared ¢, norm concentrates around d



/5 norm of d-dimensional iid standard Gaussian vector

£, norm of samples
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Average training square error

2 _
Etram - H 1 Ztraln
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Dimension? n—p



Average training square error

Training error ~ o4 /1 — P
n

When p << n, error = noise

When p = n, error is very small: good news?



Observed training square error
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Test data

Training data

~ T ~
Ytrain - = X Btrue + Ztrain

Test data

- N -
Ytest - = Xtest/Btrue + Ztest

Xtest 1S Z€rO mean

Zeest is zero-mean Gaussian with variance o2



Test error

Goal: Characterize mean square of

= T o=

Etest := Vtest — Xtest/BOLS

~ ~T ~
= Ztest T Xiest (Btrue - BOLS)
where Bois is computed from the training data
By independence
~ <T 7 _ 2 T 3
Var <)/test - XtestﬁOLS) = 0“4+ Var (Xtest (/Btrue - /BOLS))

Everything is zero mean so mean square = variance



Coefficient error

Let USV'T be the SVD of X

/BOLS - Btrue = (XXT)71X}7 - Btrue
= (XXT)_lx(XTﬁtrue + Etrain) - 5true
= Usil VTftrain

P T
Vi" Ztrain
= 7{_]’-
2 : S:
i=1 !

Potentially worrying: singular values can be very small



Singular values for temperature dataset
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Mean square test error

~T = 2 P V,'thrain u,'T;test ?
E (Xtest (6true - /BOLS)) =E Z S—,

- o Ts T Te  Ts
V’-TZtrain u’-TXtest Vj' Ztrain Uj Xtest E (U,' XtestU; Xtest) T . ~T
E = vi E (ztrainztrain) vj

Sj Sj SiSj

Te  Te

E (U,' XtestU; Xtest) T
= Vi Vj

S;Sj

=0 for i #




Mean square test error

E [(V,‘thrain)2] E [(U,'Tk'test)z]
2

5
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B [ (R, (e — o)) ] =

Tr(s 5T T oT
Vi E(Zt"ainztrain)Viui E(XtEStXtest)ui
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1 Si
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. 2 ui Z)?test Ui
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Il
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~ Var(u! X
E(Etzest) =02 + o? E 7( 5'2 teSt)
i=1 !

Are small singular values problematic?



Mean square test error

s,.2 B u;US2U T y;
n n
. u,-XXTu,-
- n
= UiTZXU,'
= var (P, X)

p Te
~ Var(u/ X
B(EL) = o2 + 02 Vorl )
i=1 !

%02<1+B)
n

If variance estimated from training data = test variance, small singular
values are not a problem!



Observed test mean square error
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What have we learned?

» Fitting a linear regression model can be interpreted in terms of a
projection onto a subspace

> This yields a precise description of the training error as a function of
the number of data

> |f data are not enough we overfit!

P Test error can be low even if coefficient error is high, as long as data
are enough to accurately estimate the covariance matrix of the features



