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Multiresolution analysis

Scale / resolution at which information is encoded is not uniform

Goal: Decompose signals into components at different resolutions

Challenge: Design basis of vectors to achieve this

If vectors are orthogonal, then we can just project onto them to separate
contributions of each scale



Multiresolution decomposition

Let N := 2K for some K , a multiresolution decomposition of RN is a
sequence of nested subspaces VK ⊂ VK−1 ⊂ . . . ⊂ V0 satisfying:

I V0 = RN

I If x ∈ Vk then x shifted by 2k is also in Vk (invariance to translations)

I Dilating x ∈ Vj yields vector in Vj+1

Example: Vectors that are constant on segments of length 2k



Multiresolution decomposition in 2D

Let N := 2K for some K , a multiresolution decomposition of RN × RN is a
sequence of nested subspaces VK ⊂ VK−1 ⊂ . . . ⊂ V0 satisfying:

I V0 = RN × RN

I If x ∈ Vk then x shifted by 2k horizontally or vertically is also in Vk
(invariance to translations)

I Dilating x ∈ Vj yields vector in Vj+1



Example

Subspace Vk contains vectors that are constant on 2k × 2k squares

Do the subspaces satisfy the conditions?

I V0 = RN × RN

I If x ∈ Vk then x shifted by 2k horizontally or vertically is also in Vk
(invariance to translations)

I Dilating x ∈ Vj yields vector in Vj+1



Example

What basis vectors span Vk? Should we use them to decompose signals?



Solution

Decompose the finer subspaces into a direct sum

Vk = Vk+1 ⊕Wk+1, 0 ≤ k ≤ K − 1,

Wk is the orthogonal complement of Vk+1 in Vk , so it captures
finest resolution available at level k

We can then decompose RN × RN into different scales

RN × RN = V0 =

V1 ⊕W1

= V2 ⊕W2 ⊕W1

= Vk ⊕Wk ⊕ · · · ⊕W2 ⊕W1



Solution

Decompose the finer subspaces into a direct sum

Vk = Vk+1 ⊕Wk+1, 0 ≤ k ≤ K − 1,

Wk is the orthogonal complement of Vk+1 in Vk , so it captures
finest resolution available at level k

We can then decompose RN × RN into different scales

RN × RN = V0 = V1 ⊕W1

= V2 ⊕W2 ⊕W1

= Vk ⊕Wk ⊕ · · · ⊕W2 ⊕W1



R4 × R4 = V0 = V1 ⊕W1



V1 = V2 ⊕W2



R4 × R4 = V0 = V2 ⊕W2 ⊕W1



R16 × R16 = V0 = V2 ⊕W3 ⊕W2 ⊕W1
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2D Haar wavelet decomposition

Projection onto V9 Coefficients for V9
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2D Haar wavelet decomposition

Projection onto V8 Coefficients for W9
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2D Haar wavelet decomposition

Projection onto V7 Coefficients for W8
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2D Haar wavelet decomposition

Projection onto V6 Coefficients for W7
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2D Haar wavelet decomposition

Projection onto V5 Coefficients for W6

6
4
2

0
2
4
6

6
4
2

0
2
4
6

6
4
2

0
2
4
6



2D Haar wavelet decomposition

Projection onto V4 Coefficients for W5
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2D Haar wavelet decomposition

Projection onto V3 Coefficients for W4
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2D Haar wavelet decomposition

Projection onto V2 Coefficients for W3
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2D Haar wavelet decomposition

Projection onto V1 Coefficients for W2
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2D Haar wavelet decomposition

Projection onto V0 Coefficients for W1
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2D multiresolution analysis

Thresholding



Denoising

In real applications measurements are usually corrupted by noise

Simple, yet useful, model:

data = signal+ noise

Denoising is the problem of estimating the signal from the noisy data



Noisy image
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Wavelet coefficients of noisy image



Wavelet coefficients of clean image



How can we exploit this to denoise?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense



How would you denoise this signal?

Data

Signal



Thresholding

Hard-thresholding operator

Hη (v) [j ] :=

{
v [j ] if |v [j ]| > η

0 otherwise



Hard-thresholding

−η 0 η

−η

0

η



Denoising via hard thresholding

Estimate

Signal



Denoising via hard thresholding

Given data y and a sparsifying linear transform A

1. Compute coefficients Ay

2. Apply the hard-thresholding operator Hη : CN → CN to Ay

3. Invert the transform

xest := LHη (Ay) ,

where L is a left inverse of A



Noisy image



Noisy wavelet coefficients



Thresholded wavelet coefficients



Denoised image



Clean image



Comparison

Clean Noisy Linear
denoiser

Wavelet
thresholding



Alternative approach: Use `1-norm to promote sparsity

Cost function?

min
x

1
2
||y − x ||22 + λ ||Ax ||1 = min

c

1
2

∣∣∣∣∣∣y − AT c
∣∣∣∣∣∣2

2
+ λ ||c ||1

where A is an orthogonal wavelet transform
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`1-norm regularization

Subgradients of

min
c

1
2

∣∣∣∣∣∣y − AT c
∣∣∣∣∣∣2

2
+ λ ||c ||1

AAT c − Ay + λg = c + Ay + λg where g is subgradient of `1 norm



`1-norm regularization

Subgradients of

min
c

1
2

∣∣∣∣∣∣y − AT c
∣∣∣∣∣∣2

2
+ λ ||c ||1

AAT c − Ay + λg = c + Ay + λg where g is subgradient of `1 norm



Subgradients of `1 norm

g is a subgradient of the `1 norm at x ∈ Rn if and only if

g [i ] = sign (x [i ]) if x [i ] 6= 0

|g [i ]| ≤ 1 if x [i ] = 0



`1-norm regularization

Solution to

min
c

1
2

∣∣∣∣∣∣y − AT c
∣∣∣∣∣∣2

2
+ λ ||c ||1

λg = Ay − c∗

If c∗[j ] > 0

c∗ = Ay − λ

If c∗[j ] < 0

c∗ = Ay + λ

If c∗[j ] = 0

|Ay − c∗| ≤ λ



`1-norm regularization
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Soft-thresholding operator

Sη (c)i :=
{
yi − sign (ci ) η if |ci | ≥ η
0 otherwise



Soft thresholding

−η 0 η
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Hard thresholding
Soft thresholding



Noisy wavelet coefficients



Hard thresholding



Soft thresholding
soft_0



Denoised signal



Comparison
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denoising
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