Wavelets and thresholding
 (blended lecture)

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

2D multiresolution analysis

Thresholding

Image

Multiresolution analysis

Scale / resolution at which information is encoded is not uniform
Goal: Decompose signals into components at different resolutions

Challenge: Design basis of vectors to achieve this

If vectors are orthogonal, then we can just project onto them to separate contributions of each scale

Multiresolution decomposition

Let $N:=2^{K}$ for some K, a multiresolution decomposition of \mathbb{R}^{N} is a sequence of nested subspaces $\mathcal{V}_{K} \subset \mathcal{V}_{K-1} \subset \ldots \subset \mathcal{V}_{0}$ satisfying:

- $\mathcal{V}_{0}=\mathbb{R}^{N}$
- If $x \in \mathcal{V}_{k}$ then x shifted by 2^{k} is also in \mathcal{V}_{k} (invariance to translations)
- Dilating $x \in \mathcal{V}_{j}$ yields vector in \mathcal{V}_{j+1}

Example: Vectors that are constant on segments of length 2^{k}

Multiresolution decomposition in 2D

Let $N:=2^{K}$ for some K, a multiresolution decomposition of $\mathbb{R}^{N} \times \mathbb{R}^{N}$ is a sequence of nested subspaces $\mathcal{V}_{K} \subset \mathcal{V}_{K-1} \subset \ldots \subset \mathcal{V}_{0}$ satisfying:

- $\mathcal{V}_{0}=\mathbb{R}^{N} \times \mathbb{R}^{N}$
- If $x \in \mathcal{V}_{k}$ then x shifted by 2^{k} horizontally or vertically is also in \mathcal{V}_{k} (invariance to translations)
- Dilating $x \in \mathcal{V}_{j}$ yields vector in \mathcal{V}_{j+1}

Example

Subspace \mathcal{V}_{k} contains vectors that are constant on $2^{k} \times 2^{k}$ squares
Do the subspaces satisfy the conditions?

- $\mathcal{V}_{0}=\mathbb{R}^{N} \times \mathbb{R}^{N}$
- If $x \in \mathcal{V}_{k}$ then x shifted by 2^{k} horizontally or vertically is also in \mathcal{V}_{k} (invariance to translations)
- Dilating $x \in \mathcal{V}_{j}$ yields vector in \mathcal{V}_{j+1}

Example

What basis vectors span \mathcal{V}_{k} ? Should we use them to decompose signals?

Solution

Decompose the finer subspaces into a direct sum

$$
\mathcal{V}_{k}=\mathcal{V}_{k+1} \oplus \mathcal{W}_{k+1}, \quad 0 \leq k \leq K-1
$$

\mathcal{W}_{k} is the orthogonal complement of \mathcal{V}_{k+1} in \mathcal{V}_{k}, so it captures finest resolution available at level k

We can then decompose $\mathbb{R}^{N} \times \mathbb{R}^{N}$ into different scales

$$
\mathbb{R}^{N} \times \mathbb{R}^{N}=\mathcal{V}_{0}=
$$

Solution

Decompose the finer subspaces into a direct sum

$$
\mathcal{V}_{k}=\mathcal{V}_{k+1} \oplus \mathcal{W}_{k+1}, \quad 0 \leq k \leq K-1
$$

\mathcal{W}_{k} is the orthogonal complement of \mathcal{V}_{k+1} in \mathcal{V}_{k}, so it captures finest resolution available at level k

We can then decompose $\mathbb{R}^{N} \times \mathbb{R}^{N}$ into different scales

$$
\begin{aligned}
\mathbb{R}^{N} \times \mathbb{R}^{N}=\mathcal{V}_{0} & =\mathcal{V}_{1} \oplus \mathcal{W}_{1} \\
& =\mathcal{V}_{2} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1} \\
& =\mathcal{V}_{k} \oplus \mathcal{W}_{k} \oplus \cdots \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1}
\end{aligned}
$$

$\mathbb{R}^{4} \times \mathbb{R}^{4}=\mathcal{V}_{0}=\mathcal{V}_{1} \oplus \mathcal{W}_{1}$
$\mathcal{V}_{1}=\mathcal{V}_{2} \oplus \mathcal{W}_{2}$
$\mathbb{R}^{4} \times \mathbb{R}^{4}=\mathcal{V}_{0}=\mathcal{V}_{2} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1}$

$$
\mathbb{R}^{16} \times \mathbb{R}^{16}=\mathcal{V}_{0}=\mathcal{V}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1}
$$

Image

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{9}

Coefficients for \mathcal{V}_{9}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{8}
Coefficients for \mathcal{W}_{9}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{7}
Coefficients for \mathcal{W}_{8}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{6}
Coefficients for \mathcal{W}_{7}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{5}
Coefficients for \mathcal{W}_{6}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{4}
Coefficients for \mathcal{W}_{5}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{3}
Coefficients for \mathcal{W}_{4}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{2}
Coefficients for \mathcal{W}_{3}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{1}
Coefficients for \mathcal{W}_{2}

2D Haar wavelet decomposition

Projection onto \mathcal{V}_{0}
Coefficients for \mathcal{W}_{1}

2D multiresolution analysis

Thresholding

Denoising

In real applications measurements are usually corrupted by noise
Simple, yet useful, model:

$$
\text { data }=\text { signal }+ \text { noise }
$$

Denoising is the problem of estimating the signal from the noisy data

Noisy image

Image

Wavelet coefficients of noisy image

Wavelet coefficients of clean image

How can we exploit this to denoise?

Wavelet coefficients of signal are sparse

Wavelet coefficients of noise are dense

How would you denoise this signal?

Thresholding

Hard-thresholding operator

$$
\mathcal{H}_{\eta}(v)[j]:= \begin{cases}v[j] & \text { if }|v[j]|>\eta \\ 0 & \text { otherwise }\end{cases}
$$

Hard-thresholding

Denoising via hard thresholding

Denoising via hard thresholding

Given data y and a sparsifying linear transform A

1. Compute coefficients $A y$
2. Apply the hard-thresholding operator $\mathcal{H}_{\eta}: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$ to $A y$
3. Invert the transform

$$
x_{\mathrm{est}}:=L \mathcal{H}_{\eta}(A y),
$$

where L is a left inverse of A

Noisy image

Noisy wavelet coefficients

Thresholded wavelet coefficients

Denoised image

Clean image

Comparison

Alternative approach: Use ℓ_{1}-norm to promote sparsity

Cost function?

Alternative approach: Use ℓ_{1}-norm to promote sparsity

Cost function?

$$
\min _{x} \frac{1}{2}\|y-x\|_{2}^{2}+\lambda\|A x\|_{1}=\min _{c} \frac{1}{2}\left\|y-A^{T} c\right\|_{2}^{2}+\lambda\|c\|_{1}
$$

where A is an orthogonal wavelet transform

ℓ_{1}-norm regularization

Subgradients of

$$
\min _{c} \frac{1}{2}\left\|y-A^{T} c\right\|_{2}^{2}+\lambda\|c\|_{1}
$$

ℓ_{1}-norm regularization

Subgradients of

$$
\min _{c} \frac{1}{2}\left\|y-A^{T} c\right\|_{2}^{2}+\lambda\|c\|_{1}
$$

$A A^{T} c-A y+\lambda g=c+A y+\lambda g$
where g is subgradient of ℓ_{1} norm

Subgradients of ℓ_{1} norm

g is a subgradient of the ℓ_{1} norm at $x \in \mathbb{R}^{n}$ if and only if

$$
\begin{array}{ll}
g[i]=\operatorname{sign}(x[i]) & \text { if } x[i] \neq 0 \\
|g[i]| \leq 1 & \text { if } x[i]=0
\end{array}
$$

ℓ_{1}-norm regularization

Solution to

$$
\min _{c} \frac{1}{2}\left\|y-A^{T} c\right\|_{2}^{2}+\lambda\|c\|_{1}
$$

ℓ_{1}-norm regularization

Solution to

$$
\min _{c} \frac{1}{2}\left\|y-A^{T} c\right\|_{2}^{2}+\lambda\|c\|_{1}
$$

$$
\lambda g=A y-c^{*}
$$

If $c^{*}[j]>0$

$$
c^{*}=A y-\lambda
$$

If $c^{*}[j]<0$

$$
c^{*}=A y+\lambda
$$

If $c^{*}[j]=0$

$$
\left|A y-c^{*}\right| \leq \lambda
$$

Soft-thresholding operator

$$
\mathcal{S}_{\eta}(c)_{i}:= \begin{cases}y_{i}-\operatorname{sign}\left(c_{i}\right) \eta & \text { if }\left|c_{i}\right| \geq \eta \\ 0 & \text { otherwise }\end{cases}
$$

Soft thresholding

Noisy wavelet coefficients

Hard thresholding

Soft thresholding

Denoised signal

Comparison

