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Prerequisites

Linear algebra (basis, projection, orthogonal complement, direct sum)

Fourier series
Discrete Fourier transform

Short-time Fourier transform
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Multiresolution analysis

Scale / resolution at which information is encoded is not uniform
Goal: Decompose signals into components at different resolutions
Challenge: Design basis of vectors to achieve this

If vectors are orthogonal, then we can just project onto them to separate
contributions of each scale



Father wavelet

We use a low-pass vector, called scaling vector or father wavelet, to extract
coarsest scale

Haar father wavelet




Approximation using Haar father wavelet
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Mother wavelets

We use shifts and dilations of mother wavelet to capture information at
different scales

We can choose the shifts so that the basis vectors are all orthogonal



Haar mother wavelets




Father wavelet + coarsest mother wavelet
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Father wavelet + 2 coarsest mother wavelets
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Father wavelet + 3 coarsest mother wavelets
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Father wavelet + 4 coarsest mother wavelets
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Father wavelet + 5 coarsest mother wavelets
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Father wavelet + 6 coarsest mother wavelets
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Father wavelet + 7 coarsest mother wavelets
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Father wavelet + 8 coarsest mother wavelets
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Father wavelet + 9 coarsest mother wavelets
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Multiresolution decomposition

Let N := 2K for some K, a multiresolution decomposition of RV is a
sequence of nested subspaces Vx C Vk_1 C ... C )V satisfying:

> Vy=RN
> If x € V) then x shifted by 2* is also in V (invariance to translations)

» Dilating x € V; yields vector in Vi1



Example

Subspace V) contains vectors that are constant on segments of length 2%

Satisfies conditions:
>V, =RN
> If x € V) then x shifted by 2% is also in V (invariance to translations)
» Dilating x € V; yields vector in V; ;1

Spanned by shifts/dilations of Haar father wavelets

Problem: Basis vectors are not orthogonal (at all!)



Solution

Decompose the finer subspaces into a direct sum
Vi = Vi1 © W, 0<k<K-1,

W is the orthogonal complement of Vj11 in V, so it captures
finest resolution available at level k

We can then decompose R/ into different scales

RN =vy=VviemW,
=VodWh W,
=Vi®OWiD---dWrd W,



Haar multiresolution decomposition

I R

V3




Vertical line (column 135)
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Projection onto Vj
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Projection onto Vg

Projection Coefficients for Wy
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Projection onto 1%
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Projection onto Vg

1.0

0.8

0.6

0.4

0.2

Projection
A Data
M . = Approximation
A
Voo
&
0 100 200 300 400 500

Coefficients for Wy

1.4
1.2
1.0
0.8
0.6
0.4
0.2

0.0 l




Projection onto Vs

Projection Coefficients for We
1.0
Data
= Approximation

0.8 0.6

05
0.6 0.4

03
0.4 , - o 02

: 0.1
! (3

001«

0.2 : 1
0 ] ) 3




Projection onto V

Projection Coefficients for W5
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Projection onto V3
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Projection onto 1,
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Projection onto V4
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Projection onto V)
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Haar mother wavelets in the frequency domain
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Time-frequency support of basis vectors

STFT Wavelets
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2D Wavelets

Extension to 2D by using outer products of 1D basis vectors
To build a 2D basis vector at scale (my, mz) and shift (s1, s2) we set
T
2D ._ 1D 1D
Vis1,82,m1,ma] "= V[s1,mi] (V[527m2]> )
where v1P can refer to 1D father or mother wavelets

Nonseparable designs: steerable pyramid, curvelets, bandlets...



2D Haar wavelet basis vectors
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition
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2D Haar wavelet decomposition

Approximation Coefficients




2D Haar wavelet decomposition
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2D Haar wavelet decomposition

Approximation Coefficients




2D Haar wavelet decomposition
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What have we learned

Framework for multiresolution analysis based on wavelets
Implementation based on Haar wavelets

Extension to two dimensions



