

Wavelets

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda

Prerequisites

Linear algebra (basis, projection, orthogonal complement, direct sum)

Fourier series

Discrete Fourier transform

Short-time Fourier transform

Image

Vertical line (column 135)

Multiresolution analysis

Scale / resolution at which information is encoded is not uniform

Goal: Decompose signals into components at different resolutions

Challenge: Design basis of vectors to achieve this

If vectors are orthogonal, then we can just project onto them to separate contributions of each scale

Father wavelet

We use a low-pass vector, called scaling vector or father wavelet, to extract coarsest scale

Haar father wavelet

Approximation using Haar father wavelet

We use shifts and dilations of mother wavelet to capture information at different scales

We can choose the shifts so that the basis vectors are all orthogonal

Haar mother wavelets

Father wavelet + coarsest mother wavelet

Father wavelet + 2 coarsest mother wavelets

Father wavelet + 3 coarsest mother wavelets

Father wavelet + 4 coarsest mother wavelets

Father wavelet + 5 coarsest mother wavelets

Father wavelet + 6 coarsest mother wavelets

Father wavelet + 7 coarsest mother wavelets

Father wavelet + 8 coarsest mother wavelets

Coefficients

Father wavelet + 9 coarsest mother wavelets

Multiresolution decomposition

Let $N := 2^K$ for some K, a multiresolution decomposition of \mathbb{R}^N is a sequence of nested subspaces $\mathcal{V}_K \subset \mathcal{V}_{K-1} \subset \ldots \subset \mathcal{V}_0$ satisfying:

- $ightharpoonup \mathcal{V}_0 = \mathbb{R}^N$
- ▶ If $x \in \mathcal{V}_k$ then x shifted by 2^k is also in \mathcal{V}_k (invariance to translations)
- ▶ Dilating $x \in \mathcal{V}_j$ yields vector in \mathcal{V}_{j+1}

Example

Subspace \mathcal{V}_k contains vectors that are constant on segments of length 2^k

Satisfies conditions:

- $ightharpoonup \mathcal{V}_0 = \mathbb{R}^N$
- ▶ If $x \in \mathcal{V}_k$ then x shifted by 2^k is also in \mathcal{V}_k (invariance to translations)
- ▶ Dilating $x \in \mathcal{V}_j$ yields vector in \mathcal{V}_{j+1}

Spanned by shifts/dilations of Haar father wavelets

Problem: Basis vectors are not orthogonal (at all!)

Solution

Decompose the finer subspaces into a direct sum

$$V_k = V_{k+1} \oplus W_k, \qquad 0 \le k \le K - 1,$$

 \mathcal{W}_k is the orthogonal complement of \mathcal{V}_{k+1} in \mathcal{V}_k , so it captures finest resolution available at level k

We can then decompose \mathbb{R}^N into different scales

$$\mathbb{R}^{N} = \mathcal{V}_{0} = \mathcal{V}_{1} \oplus \mathcal{W}_{1}$$

$$= \mathcal{V}_{2} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1}$$

$$= \mathcal{V}_{k} \oplus \mathcal{W}_{k} \oplus \cdots \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{1}$$

Haar multiresolution decomposition

 $\mathcal{P}_{\mathcal{V}_k} x$ is an approximation of x at scale 2^k

Vertical line (column 135)

Coefficients for \mathcal{W}_8

Coefficients for \mathcal{W}_7

Projection onto V_3

Coefficients for \mathcal{W}_4

Coefficients for W_3

Coefficients for W_2

Coefficients for \mathcal{W}_1

Haar mother wavelets in the frequency domain

Time-frequency support of basis vectors

2D Wavelets

Extension to 2D by using outer products of 1D basis vectors

To build a 2D basis vector at scale (m_1, m_2) and shift (s_1, s_2) we set

$$v_{[s_1,s_2,m_1,m_2]}^{\text{2D}} := v_{[s_1,m_1]}^{\text{1D}} \left(v_{[s_2,m_2]}^{\text{1D}} \right)^T,$$

where v^{1D} can refer to 1D father or mother wavelets

Nonseparable designs: steerable pyramid, curvelets, bandlets...

2D Haar wavelet basis vectors

Image

Approximation

${\sf Approximation}$

Approximation

Approximation

Framework for multiresolution analysis based on wavelets

Implementation based on Haar wavelets

Extension to two dimensions