Windowing

DS-GA 1013 / MATH-GA 2824 Mathematical Tools for Data Science

Carlos Fernandez-Granda
Prerequisites

Fourier series

Discrete Fourier transform
Challenge: Characterize how frequency components change over time
Fourier series

First segment or window signal, then compute Fourier series / DFT
First segment or *window* signal, then compute Fourier series / DFT
Signal
Windowed signal
Windowing a complex sinusoid

What happens if we window a sinusoid?

\[\psi_{k^*}[j] := \exp \left(\frac{i2\pi k^* j}{N} \right) \quad \text{for } 0 \leq j \leq N - 1 \]

What is the DFT of \(y := x \psi_{k^*} \)?
Windowing a complex sinusoid

\[\hat{y} [k] := \sum_{j=1}^{N} x[j] \psi_k^* [j] \exp \left(- \frac{i2\pi kj}{N} \right) \]
Windowing a complex sinusoid

\[\hat{y}[k] := \sum_{j=1}^{N} x[j] \psi_{k^*}[j] \exp \left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=1}^{N} x[j] \exp \left(\frac{i2\pi k^*j}{N} \right) \exp \left(-\frac{i2\pi kj}{N} \right) \]
Windowing a complex sinusoid

\[\hat{y}[k] := \sum_{j=1}^{N} x[j] \psi_{k^*}[j] \exp \left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=1}^{N} x[j] \exp \left(\frac{i2\pi k^*j}{N} \right) \exp \left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=1}^{N} x[j] \exp \left(-\frac{i2\pi (k - k^*) j}{N} \right) \]
Windowing a complex sinusoid

\[\hat{y}[k] := \sum_{j=1}^{N} x[j] \psi_{k^*}[j] \exp\left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=1}^{N} x[j] \exp\left(\frac{i2\pi k^*j}{N} \right) \exp\left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=1}^{N} x[j] \exp\left(-\frac{i2\pi (k - k^*) j}{N} \right) \]

\[= \hat{x}[(k - k^*)] \]
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos \left(\frac{2\pi k^* j}{N} \right), \quad 0 \leq j \leq N \]
Signal
DFT of signal
Window

The graph shows a step function with a jump from 0 to 1 at time 0.2 and back to 0 at time 0.5. The x-axis represents time, ranging from -100 to 100, and the y-axis represents the function value, ranging from 0 to 1.
Windowed signal
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos \left(\frac{2\pi k^* j}{N} \right) , \quad 0 \leq j \leq N \]

What is the DFT of \(y := xs \)?
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos\left(\frac{2\pi k^* j}{N}\right), \quad 0 \leq j \leq N \]

What is the DFT of \(y := xs \)?

\[xs = x \left(\frac{\psi_{k^*} + \psi_{-k^*}}{2} \right) \]
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos \left(\frac{2\pi k^* j}{N} \right), \quad 0 \leq j \leq N \]

What is the DFT of \(y := xs \)?

\[\hat{xs} = x \left(\frac{\psi_{k^*} + \psi_{-k^*}}{2} \right) \]

\[\hat{xs} = \frac{x \psi_{k^*} + x \psi_{-k^*}}{2} \]
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos \left(\frac{2\pi k^* j}{N} \right), \quad 0 \leq j \leq N \]

What is the DFT of \(y := xs \)?

\[
xs = x \left(\frac{\psi_{k^*} + \psi_{-k^*}}{2} \right)
\]

\[
\hat{xs} = \frac{\hat{x}\psi_{k^*} + \hat{x}\psi_{-k^*}}{2} = \frac{\hat{x}[(k - k^*)] + \hat{x}[k + k^*]}{2}, \quad 0 \leq k \leq N
\]
Rectangular window \(\tilde{\pi} \in \mathbb{C}^N \) with width \(2w \):

\[
\tilde{\pi}[j] := \begin{cases}
1 & \text{if } |j| \leq w, \\
0 & \text{otherwise}
\end{cases}
\]
DFT of rectangular window

\[\hat{\pi}[0] = \sum_{j=-N/2+1}^{N/2} \hat{\pi}[j] \]

\[= \sum_{j=-w}^{w} 1 = 2w + 1 \]
DFT of rectangular window

\[\hat{\pi}[k] = \sum_{j=-N/2+1}^{N/2} \pi[j] \exp \left(-\frac{i2\pi kj}{N} \right) \]
DFT of rectangular window

\[
\hat{\pi} [k] = \sum_{j=-N/2+1}^{N/2} \pi [j] \exp \left(-\frac{i2\pi k j}{N} \right)
\]

\[
= \sum_{j=-w}^{w} \exp \left(-\frac{i2\pi k j}{N} \right)
\]
DFT of rectangular window

\[
\hat{\pi}[k] = \sum_{j=-N/2+1}^{N/2} \hat{\pi}[j] \exp \left(-\frac{i2\pi kj}{N} \right)
\]

\[
= \sum_{j=-w}^{w} \exp \left(-\frac{i2\pi k}{N} \right)^j
\]

\[
= \exp \left(\frac{i2\pi kw}{N} \right) - \exp \left(-\frac{i2\pi k(w+1)}{N} \right)
\]

\[
= \frac{\exp \left(-\frac{i2\pi k}{N} \right) - 1}{1 - \exp \left(-\frac{i2\pi k}{N} \right)}
\]
DFT of rectangular window

\[\hat{\pi} [k] = \sum_{j=-N/2+1}^{N/2} \hat{\pi} [j] \exp \left(-\frac{i2\pi kj}{N} \right) \]

\[= \sum_{j=-w}^{w} \exp \left(-\frac{i2\pi k}{N} \right)^j \]

\[= \frac{\exp \left(\frac{i2\pi kw}{N} \right) - \exp \left(-\frac{i2\pi k(w+1)}{N} \right)}{1 - \exp \left(-\frac{i2\pi k}{N} \right)} \]

\[= \frac{\exp \left(-\frac{i2\pi k}{2N} \right) 2i \sin \left(\frac{2\pi k(w+1/2)}{N} \right)}{\exp \left(-\frac{i2\pi k}{2N} \right) 2i \sin \left(\frac{\pi k}{N} \right)} \]
DFT of rectangular window

\[\hat{\pi} [k] = \sum_{j=-N/2+1}^{N/2} \hat{\pi} [j] \exp \left(-\frac{i 2\pi k j}{N} \right) \]

\[= \sum_{j=-w}^{w} \exp \left(-\frac{i 2\pi k}{N} \right)^j \]

\[= \exp \left(\frac{i 2\pi kw}{N} \right) - \exp \left(-\frac{i 2\pi k(w+1)}{N} \right) \]

\[= \frac{\exp \left(-\frac{i 2\pi k}{2N} \right) 2i \sin \left(\frac{2\pi k(w+1/2)}{N} \right)}{1 - \exp \left(-\frac{i 2\pi k}{N} \right)} \]

\[= \frac{\exp \left(-\frac{i 2\pi k}{2N} \right) 2i \sin \left(\frac{\pi k}{N} \right)}{\sin \left(\frac{\pi k}{N} \right)} \]
DFT of rectangular window
Windowing a real sinusoid

What happens if we window a real sinusoid?

\[s[j] := \cos \left(\frac{2\pi k^* j}{N} \right), \quad 0 \leq j \leq N \]

What is the DFT of \(y := xs \)?

\[xs = x \left(\frac{\psi_{k^*} + \psi_{-k^*}}{2} \right) \]

\[\hat{x} = \frac{x\psi_{k^*} + x\psi_{-k^*}}{2} \]

\[= \frac{\hat{x}[(k - k^*)] + \hat{x}[-(k - k^*)]}{2}, \quad 0 \leq k \leq N \]
DFT of signal
DFT of windowed signal
Hann window

![Graph of a Hann window function]

- Time axis from 0 to 100
- Value axis from -100 to 100
The Hann window \(h \in \mathbb{C}^N \) of width \(2w \) equals

\[
 h[j] := \begin{cases}
 \frac{1}{2} \left(1 + \cos \left(\frac{\pi j}{w} \right) \right) & \text{if } |j| \leq w, \\
 0 & \text{otherwise}
 \end{cases}
\]
DFT of Hann window
Signal
Hann window
Windowed signal
DFT of signal
DFT of Hann window
DFT of windowed signal
DFT of windowed signal (rectangular window)
Time-frequency resolution

Time resolution governed by width of window

Can we just make the window arbitrarily narrow?
Compressing in time dilates in frequency and vice versa

$x \in L_2[-T/2, T/2]$ is nonzero in a band of width $2w$ around zero.

Let y be such that

$$y(t) = x(\alpha t), \quad \text{for all } t \in [-T/2, T/2],$$

for some positive real number α such that $w/\alpha < T$.

The Fourier series coefficients of y equal

$$\hat{y}[k] = \frac{1}{\alpha} \langle x, \phi_k/\alpha \rangle$$
Proof

\[\hat{y} [k] = \int_{t=-T/2}^{T/2} y(t) \exp \left(-i \frac{2\pi kt}{T} \right) \, dt \]
Proof

\[\hat{y} [k] = \int_{t=-T/2}^{T/2} y(t) \exp \left(-\frac{i2\pi kt}{T} \right) \, dt \]
\[= \int_{t=-w/\alpha}^{w/\alpha} x(\alpha t) \exp \left(-\frac{i2\pi kt}{T} \right) \, dt \]
Proof

\[\hat{y} [k] = \int_{t=\frac{-T}{2}}^{\frac{T}{2}} y(t) \exp \left(-\frac{i2\pi kt}{T} \right) \, dt \]

\[= \int_{t=\frac{-w}{\alpha}}^{\frac{w}{\alpha}} x(\alpha t) \exp \left(-\frac{i2\pi kt}{T} \right) \, dt \]

\[= \frac{1}{\alpha} \int_{\tau=\frac{-w}{\alpha}}^{\frac{w}{\alpha}} x(\tau) \exp \left(-\frac{i2\pi k\tau}{\alpha T} \right) \, d\tau \]
Proof

\[\hat{y}[k] = \int_{t=-T/2}^{T/2} y(t) \exp \left(-\frac{i2\pi kt}{T} \right) dt \]
\[= \int_{t=-w/\alpha}^{w/\alpha} x(\alpha t) \exp \left(-\frac{i2\pi kt}{T} \right) dt \]
\[= \frac{1}{\alpha} \int_{\tau=-w}^{w} x(\tau) \exp \left(-\frac{i2\pi k\tau}{\alpha T} \right) d\tau \]
\[= \frac{1}{\alpha} \int_{\tau=-T/2}^{T/2} x(\tau) \exp \left(-\frac{i2\pi k\tau}{\alpha T} \right) d\tau \]
Proof

\[\hat{y}[k] = \int_{t = -T/2}^{T/2} y(t) \exp \left(-\frac{i2\pi kt}{T}\right) \, dt \]

\[= \int_{t = -w/\alpha}^{w/\alpha} x(\alpha t) \exp \left(-\frac{i2\pi kt}{T}\right) \, dt \]

\[= \frac{1}{\alpha} \int_{\tau = -w}^{w} x(\tau) \exp \left(-\frac{i2\pi k\tau}{\alpha T}\right) \, d\tau \]

\[= \frac{1}{\alpha} \int_{\tau = -T/2}^{T/2} x(\tau) \exp \left(-\frac{i2\pi k\tau}{\alpha T}\right) \, d\tau \]

\[= \frac{1}{\alpha} \langle x, \phi_{k/\alpha} \rangle \]
$w = 90$
$w = 30$
$w = 5$
Time-frequency resolution

Fundamental trade-off

Uncertainty principle: cannot resolve in time and frequency simultaneously
What have we learned

Effect of temporal windowing in the frequency domain

Trade-off in time-frequency resolution