NLP and Text-as-Data Speaker Series, Spring 2022

# Lipstick on a Pig:

#### Using Language Models as Few-Shot Learners



Sameer Singh sameersingh.org



#### Natural Language Processing Pipeline



### Natural Language Processing Pipeline



### Natural Language Processing Pipeline



#### What's next? Get rid of finetuning!



#### Manual Prompts: Sentiment Analysis Task Model (TM) Input: Amazing movie! Sentiment: [MASK] Task Input Pos (hu un us <u>N</u> Language model "Amazing movie!" LM

*P*("positive") > *P*("negative")

6

nlp

## In-Context Learning (Few-Shot Learning!)



nlp

### Why is in-context learning interesting?

#### Academically interesting

- What do language models learn? How do we control them?
- Practically relevant (with GPT-3)
  - effective with ~0-16 examples
  - serve one model for many tasks
  - no ML expertise needed
- Related to other ways of adapting language models
  - AutoPrompt\*: customized phrases to adapt LMs
  - Prompt/prefix tuning: continuous changes to input/weights
  - Increasingly more accurate and useful

### Today's Talk



## What are the biases introduced by this format?

## How robust are these capabilities to the pretraining data?

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment: [MASK]



### Today's Talk

Z. Zhao, E. Wallace, S. Feng, D. Klein, S. Singh.

UCI nlp

**Calibrate Before Use: Improving Few-shot Performance of Language Models.** *International Conference on Machine Learning (ICML).* 2021

What are the biases introduced by this format?

How robust are these capabilities to the pretraining data?

 Image: Characteristic diagonalization
 Pre-Training

 Image: Characteristic diagonalization
 Unlabeled Data





### Components Of The Prompt

#### **Prompt Format**





### Components Of The Prompt

#### Training Example Selection

Input: <mark>Subpar acting.</mark> Sentiment: <mark>negative</mark>

Input: Beautiful film. Sentiment: positive

Input: Amazing. Sentiment:

Input: Good film.Sentiment: positiveInput: Don't watch.Sentiment: negativeInput: Amazing.Sentiment:



### Components Of The Prompt

Training Example Perturbation

Input: <mark>Subpar acting.</mark> Sentiment: <mark>negative</mark> Input: <mark>Beautiful film</mark>. Sentiment: <mark>positive</mark>

Input: Amazing. Sentiment:

Input: Beautiful film.Sentiment: positiveInput: Subpar acting.Sentiment: negativeInput: Amazing.Sentiment:

#### Accuracy Is Highly Sensitive To Prompt Design







...

Prompt #24



#### Example Permutation Impacts Accuracy

nlp

### Accuracy Is Highly Sensitive To Prompt Design



Example Selection Impacts Accuracy



#### Accuracy Is Highly Sensitive To Prompt Design





Example Format Impacts Accuracy



#### In-Context Learning

Input: Meh movie. Sentiment: Negative Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment: [MASK]





#### Majority Label Bias

Frequency of Positive *Test* Predictions



Frequent training answers dominate predictions

#### **Recency Bias**

**Frequency of Positive Predictions** 



Examples near end of prompt dominate predictions

#### Common Token Bias

|                                  |                      |                     | Token          | Prob |
|----------------------------------|----------------------|---------------------|----------------|------|
| The Model T was released by Fore | book                 | 0.35                |                |      |
| Answer:                          |                      |                     | transportation | 0.23 |
|                                  |                      | )                   | school         | 0.11 |
|                                  | Language model<br>LM | $  \longrightarrow$ | village        | 0.03 |
|                                  |                      |                     | company        | 0.02 |

| Token          | Web (%)  | Label (%) | Prediction (%) |  |
|----------------|----------|-----------|----------------|--|
| book           | 0.026    | 9         | 29             |  |
| transportation | 0.000006 | 5 9       | 4              |  |

Common n-grams dominate predictions

# Contextual Calibration of Language Models

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment: \_\_\_\_\_



Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: N/A. Sentiment: \_\_\_\_\_

"meaningless" input, but full context

#### More Accurate and Stable!

11 different datasets, 0-16 shots, GPT-2 and GPT-3 models

**Different Training Examples** 

90 80 Director Accuracy (%) AGNews Accuracy (%) 0 0 0 0 08 70 60 50 MIT GPT-3 175B 40 GPT-3 13B With Calibration With Calibration 40 01 8 16 0 4 Number of Training Examples Number of Training Examples

#### Different Prompt Formats



Improved mean and worst accuracy Reduced variance for selection and ordering

Reduced variance for formats



#### Contextual Calibration for In-context Learning + *extremely* simple fix + boosts accuracy, reduces variance

- Calibration doesn't completely solve brittleness
- Independent of the pretraining corpus

### Today's Talk



## What are the biases introduced by this format?

## How robust are these capabilities to the pretraining data?

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment: [MASK]



## Today's Talk

#### Y. Razeghi, R. Logan, M. Gardner, S. Singh.

Impact of Pretraining Term Frequencies on Few-Shot Reasoning ArXiV. 2022

What are the biases introduced by this format?

How robust are these capabilities to the pretraining data?





LM

### Reasoning and In-context Learning

- Instead of downstream classification, let's focus on Reasoning
  - Difficult to define precisely, but it's about inference
  - Go beyond regurgitation of what it has already seen
  - Feels different from memorization of facts
- Language Models need to perform reasoning

Went for a long lunch today, it lasted \_\_\_\_\_.

Alex loves chewing bones, which is not a surprise, given that he's a \_\_\_\_\_.

I wanted it in 10 days, but it took 2 weeks, which made me \_\_\_\_\_.

- And in-context few-shot reasoning is fairly accurate!
  - But how much of this performance is robust reasoning?

### Numerical Reasoning

- One of the fundamental reasoning tasks
  - Version of common-sense reasoning
- Piece of the Neural vs Symbolic debate
  - Can LMs learn to multiply numbers?
- Good few-shot performance by big LMs
  - LMs are not explicitly trained for them

| Prompt                                      |
|---------------------------------------------|
| What is 75*10?                              |
|                                             |
| Output:                                     |
| 750                                         |
| What is -0.002 take away 72.75?             |
| -72.752                                     |
| Calculate -0.5 - 1039.                      |
| -1039.5                                     |
| What is the difference between -1360 and 2? |
| 1362                                        |
| What is -27.95 less than -20?               |
| 7.95                                        |
| Calculate -0.3 + -169.                      |
| -169.3                                      |
| What is 0.7 minus 0.05?                     |
| 0.65                                        |
| Calculate -2 + 0.0899.                      |
| -1.9101                                     |
|                                             |

Example from GPT-J blog:

#### UCI nlp

### Motivating Example: Multiplication

• Good performance but not always correct

Q: What is 24 times 18? A: 432 🗸

Q: What is 23 times 18? A: 462 🗙

 $\Omega(24) \simeq 10^7$ 

 $\Omega(23) \simeq 10^6$ 

Why does the model perform differently on different instances?

Hypothesis: maybe it depends on unigram statistics in pretraining?

## Motivating Example: Multiplication

- First operand: numbers between 0-99
- Accuracy averaged over:
  - 5 choices of training instances
  - second operand: numbers in 1-50

Q: What is 24 times [x]? A: \_\_\_\_ Q: What is 23 times [x]? A: \_\_\_\_ 1.0 0.8 0.6 0.6 0.4 0.2 0.2 0.0 10<sup>7</sup> 10<sup>8</sup> Frequency

Performance of GPT-J on 2-shot multiplication

### Motivating Example: Multiplication

- First operand: numbers between 0-99
- Accuracy averaged over:
  - 5 choices of training instances
  - second operands as numbers in 1-50

Q: What is 24 times [x]? A: \_\_\_\_ Q: What is 23 times [x]? A: \_\_\_\_ Performance of GPT-J on 2-shot multiplication



### Pipeline for Evaluating this Effect





nlp



### Analysis of Language Models





#### Metric: Performance Gap

• Difference in average accuracy of the instances in the top and bottom quantiles of the distribution over term frequencies

$$\Delta(\Omega) = \operatorname{Acc}(\Omega_{>90\%}) - \operatorname{Acc}(\Omega_{<10\%})$$



### Experiment Setup

- EleutherAl GPT-models
  - GPT-J-6B
  - GPT-Neo-2.7B
  - GPT-Neo-1.3B

#### **Pretrained on Pile Dataset**

- 800GB pretraining corpus
- Publicly available!

#### Training examples in the prompt:

- Randomly choose *k* examples
- 5 choice of random seeds



#### Arithmetic Reasoning



Q: What is 24 plus [x]? A: \_\_\_\_ Q: What is 24 times [x]? A: \_\_\_\_

| k  | Multipl         | ication | Addition |            |  |
|----|-----------------|---------|----------|------------|--|
|    | Acc. $\Delta_1$ |         | Acc.     | $\Delta_1$ |  |
| 0  | 5.4             | 18.0    | 1.6      | 8.4        |  |
| 2  | 35.9            | 77.6    | 88.2     | 16.8       |  |
| 4  | 39.2            | 70.8    | 91.4     | 15.0       |  |
| 8  | 42.9            | 74.6    | 89.6     | 16.3       |  |
| 16 | 40.9            | 73.3    | 88.6     | 16.4       |  |

#### **Operation Inference**

1.0



| Q: What is 24 # [x]? | A: |
|----------------------|----|
| Q: What is 24 # [x]? | A: |

| k  | Multiplie | cation (#) | Addition (#) |            |  |
|----|-----------|------------|--------------|------------|--|
|    | Acc.      | $\Delta_1$ | Acc.         | $\Delta_1$ |  |
| 0  | -         | -          | -            | -          |  |
| 2  | 3.1       | 14.1       | 7.8          | 18.1       |  |
| 4  | 5.7       | 20.9       | 9.8          | 24.8       |  |
| 8  | 9.4       | 31.3       | 19.8         | 31.0       |  |
| 16 | 11.0      | 39.6       | 26.2         | 38.5       |  |

#### 37

#### Time Unit Conversion

- Minute to Seconds
- Hour to Minutes
- Day to Hour
- Week to Day
- Month to Week
- Year to Month
- Decade to Year

- Q: What is 24 minutes in seconds? A: \_\_\_\_
  - Q: What is 24 hours in minutes? A: \_\_\_\_
  - Q: What is 24 days in hours? A: \_\_\_\_
  - Q: What is 24 weeks in days? A: \_\_\_\_
  - Q: What is 24 months in weeks? A: \_\_\_\_
  - Q: What is 24 years in months? A: \_\_\_\_
  - Q: What is 24 decades in years? A: \_\_\_\_





#### Time Unit Conversion



#### Time Unit Conversion

| k  | Min→Sec |                | Hour→Min |                | Day→Hour |                | Week→Day |                |
|----|---------|----------------|----------|----------------|----------|----------------|----------|----------------|
|    | Acc.    | $\Delta_{1,2}$ | Acc.     | $\Delta_{1,2}$ | Acc.     | $\Delta_{1,2}$ | Acc.     | $\Delta_{1,2}$ |
| 0  | 1.3     | 0.0            | 1.0      | 0.0            | 1.0      | 0.0            | 1.0      | 0.0            |
| 2  | 25.5    | 62.5           | 19.4     | 58.0           | 12.1     | 28.9           | 13.1     | 43.5           |
| 4  | 35.5    | 60.0           | 29.1     | 76.4           | 22.7     | 46.4           | 19.2     | 40.9           |
| 8  | 49.9    | 72.1           | 36.3     | 74.6           | 31.0     | 59.1           | 28.6     | 70.6           |
| 16 | 58.4    | 82.7           | 42.8     | 80.1           | 43.3     | 62.8           | 28.0     | 22.1           |

nlp

#### Effect of Model Size



#### multiplication

- As we increase size of model
  - Models get more accurate
  - But, more impacted by pretraining
- Number of shots is inconsistent
  - more training doesn't lead to robust reasoning by itself
- Difficult to detangle accuracy
  - By scale itself is not a solution

Effect of Pretraining on Reasoning + *high* impact on reasoning performance + raises questions about how to design, and evaluate, LMs

we are not making a causal statement about reasoning
only evaluated on numerical reasoning

### Today's Talk



## What are the biases introduced by this format?

## How robust are these capabilities to the pretraining data?

Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: Amazing. Sentiment: [MASK]



### What Can We Do?

- More diverse data is better!
  - Will suffer from Zipf's Law
  - Future is more unique than the past

- Augmentation during pretraining?
  - Add data to address specific reasoning
  - Good for fixing the issues we have observed
  - Doesn't feel like the end goal



 $10^6$ 

10

 $10^4$   $10^4$   $10^3$ 

 $10^{2}$  $10^{1}$ 

10

10<sup>6</sup> 10<sup>5</sup>

 $10^{2}$ 

 $10^{1}$ 

#### UCI nlp

### What Can We Do?

- Maybe scaling further will help?
  - Ultimately, they will just generalize perfectly?



- Neuro-symbolic language modeling?
  - Give LMS access to KGs, calculators, etc.
  - Barack's Wife Hillary ... [ACL 2019] \*
- Other losses for pretraining?
  - Should words really compete with each other?



\* https://arxiv.org/abs/1906.07241







# Thank you!

@sameer\_ sameer@uci.edu sameersingh.org