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What'’s next? Get rid of finetuning!
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Manual Prompts: Sentiment Analysis
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In-Context Learning (Few-Shot Learning!) "

Task Model (TM)

Input: Subpar acting. Sentiment:
Input: Beautiful film. Sentiment:
Input: Amazing movie! Sentiment:
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Why is in-context learning interesting?

* Academically interesting
 What do language models learn? How do we control them?

» effective with ~0-16 examples
* serve one model for many tasks
* no ML expertise needed

* Related to other ways of adapting language models
* AutoPrompt*: customized phrases to adapt LMs
* Prompt/prefix tuning: continuous changes to input/weights
* Increasingly more accurate and useful

* https://arxiv.org/abs/2010.15980
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Z. Zhao, E. Wallace, S. Feng, D. Klein, S. Singh. V‘/(/P
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TO day S Tall( Calibrate Before Use: Improving Few-shot Performance of Language Models.

International Conference on Machine Learning (ICML). 2021
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Components Of The Prompt

Prompt Format
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> Q: What's the sentiment of "Subpar acting™ A: negative
> Q: What's the sentiment of "Beautiful film™ A: positive

Q: What's the sentiment of “Amazing”™” A:




Components Of The Prompt

Training Example Selection

nput: Subpar acting. Sentiment: negative

nput: Beautiful film. Sentiment: positive

nput: Amazing. Sentiment:

nput: Good film.  Sentiment: positive

nput: Dont watch. Sentiment: negative

nput: Amazing. Sentiment:




Components Of The Prompt

Training Examp

e Perturbation

nput: Subpar acting. Sentiment: negative

nput: Beautiful film. Sentiment: positive

nput: Amazing. Sentiment:

nput: Beautiful film. Sentiment: positive

nput: Subpar acting. Sentiment: negative

nput: Amazing. Sentiment:




Accuracy Is Highly Sensitive To Prompt Design “
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Accuracy Is Highly Sensitive To Prompt Design “

Example #1 Example #2 Example #4 90 A _1:
Example #2 Example #1 Example #3 ;\? .
Example #3 Example #3 Example #2 ; 80 - >

5 s
Example #4 Example #4 Example #1 @

—

e

S 70
Prompt #1 Prompt #2 Prompt #24 <

o

= 60

wn

wn

T All 24 Permutations

50
- _ —
Example #1 1
Example #2
Example #3
Example #4

\ /

[ Training Set } [ Training Set } [ Training Set } Exa m ple SeleCUOn
& " i Impacts Accuracy




Accuracy Is Highly Sensitive To Prompt Design “

— Input: Subpar acting. Sentiment: negative
[ FO;Tat } Input: Beautiful film. Sentiment: positive ;
Input: Amazing. Sentiment:
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In-Context Learning

Input: Meh movie. Sentiment:
Input: Subpar acting. Sentiment:
Input: Beautiful film. Sentiment:
Input: Amazing. Sentiment:
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Format matters

Selection matters

Order matters

Word choice matters
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Majority Label Bias

Frequency of Positive Test Predictions
100

Frequent training answers
dominate predictions
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Recency Bias

Frequency of Positive Predictions
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Common Token Bias

Token Prob
What topic is the following text about?
The Model T was released by Ford in 1908. book -
Answer \ transportation 0.23
school 0.11
L del
AnEHege MOtE | —— | village 0.03
company 0.02
Token Web (%) Label (%) Prediction (%)
book 0.026 9 29
transportation 0.0000006 9 4

Common n-grams dominate predictions




Contextual Calibration of Language Models

0.6
Input: Subpar acting. Sentiment: Negative
Input: Beautiful film. Sentiment: Positive

0.4
Input: Amazing. Sentiment: l ‘
Pos Neg ]

1 o7
Input: Subpar acting. Sentiment: Negative / Pos Neg
Input: Beautiful film. Sentiment: Positive
Input: N/A. Sentiment: i
“meaningless” input, Pos Neg
but full context

»

o
o

0.7

»

21




More Accurate and Stable!

11 different datasets, 0-16 shots, GPT-2 and GPT-3 models

Different Training Examples
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Contextual Calibration for In-context Learning

+ extremely simple fix
+ boosts accuracy, reduces variance

- Calibration doesn’t completely solve brittleness
- Independent of the pretraining corpus
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Today’s Talk

Y. Razeghi, R. Logan, M. Gardner, S. Singh.
Impact of Pretraining Term Frequencies on Few-Shot Reasoning
ArXiV. 2022
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Reasoning and In-context Learning

* Instead of downstream classification, let’s focus on Reasoning
 Difficult to define precisely, but it’'s about inference
* Go beyond regurgitation of what it has already seen
* Feels different from memorization of facts

 Language Models need to perform reasoning

Went for a long lunch today, it lasted

Alex loves chewing bones, which is not a surprise, given that he’s a

| wanted it in 10 days, but it took 2 weeks, which made me

* And Is fairly accurate!
* But how much of this performance is reasoning?
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Numerical Reasoning

* One of the fundamental reasoning tasks
* Version of common-sense reasoning

* Piece of the Neural vs Symbolic debate
* Can LMs learn to multiply numbers?

* Good few-shot performance by big LMs
* LMs are not explicitly trained for them

What is -0.002 take away 72.75?
—=72.752

Calculate -0.5 - 1039.

-1039.5

What is the difference between -1360 and 27?
1362

What is -27.95 less than -207?
7.95

Calculate -0.3 + -169.

-169.3

What is 0.7 minus 0.057

0.65

Calculate -2 + 0.0899.
-1.9101

Example from GPT-J blog:

27



Motivating Example: Multiplication

* Good performance but not always correct

Q: What is 24 times 18? A: 432 /

Q: What is 23 times 18? A: 462 X

Q(24) =107

Q(23) =106

Why does the model perform differently on different instances?

Hypothesis: maybe it depends on unigram statistics in pretraining?

28



Motivating Example: Multiplication

* First operand: numbers between 0-99

Performance of GPT-J on 2-shot multiplication

* Accuracy averaged over:
* 5 choices of training instances
» second operand: numbers in 1-50
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Motivating Example: Multiplication

* First operand: numbers between 0-99

Performance of GPT-J on 2-shot multiplication

* Accuracy averaged over:
* 5 choices of training instances
* second operands as numbers in 1-50
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Pipeline for Evaluating this Effect

Pretraining Corpus

l

Count
Occurrences

Term Counts

(24)

— [(23)

(60, hour)

107
106
106

Prompt Templates

—

Q: What is [x,] times [x,]? A: [y]

Reasoning Queries

24 X18=7 (432)

23 X18 =7 (414)
60 hours — mins?
(3600)

—{

|

Render
Prompts

]ﬁ

Q: What is 24 times 18?
A:
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Analysis of Language Models

1.0
|
as) 0.8
Q: What is 24 times 18? > .
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C

Metric: Performance Gap

* Difference in average accuracy of the instances in the top and
bottom quantiles of the distribution over term frequencies

Bottom 10% Top 10%
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Experiment Setup

e EleutherAl GPT-models
 GPT-J-6B
« GPT-Neo-2.7B
 GPT-Neo-1.3B

Pretrained on Pile Dataset

* 800GB pretraining corpus
* Publicly available!

Training examples in the prompt:
 Randomly choose k examples
* 5 choice of random seeds
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Arithmetic Reasoning

addition multiplication
LD = ) Q: What is 24 plus [x]? A:__
- M /./ Q: What is 24 times [x]? A: __
* () ./.I//
0.6 Y,
././//
4% Multiplication Addition
0.4 = k
/./ > Acc. A, Acc. Ay
02 | T k=2 0 54 180 16 84
—— k=8 i 2 359 776 882 168
0.0 ’ 4 392 708 914 150
- 8§ 429 746 89.6 163
0 107 10° 10° 10" 10° 16 409 733 886 164
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1.0

0.8

0.6

0.4

0.2

0.0

addition

Operation Inference

multiplication

Q: What is 24 # [x]? A: _

Q: What is 24 # [x]? A: _

L Multiplication (#) Addition (#)
Acc. A1  Acc. Aq

0 - - - ,

2 3.1 14.1 7.8 18.1

4 5.7 20.9 98 2438

8 9.4 31.3 198 31.0

16 11.0 39.6 262 38.5

----- k=2
s =g
7
o
7/
&
R4
/'/
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105 107 108
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Time Unit Conversion

* Minute to Seconds
* Hour to Minutes

* Day to Hour

* Week to Day

* Month to Week

* Year to Month

* Decade to Year

Q: W
Q: W
Q: W
Q: W
Q: W
Q: W
Q: W

nat is
nat is
nat Is
nat is
nat is
nat Is

nat Is

minutes in seconds? A:
hours in minutes? A:
days in hours? A: __
weeks in days? A: __
months in weeks? A:
years in months? A: __
decades in years? A: __



Time Unit Conversion
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Time Unit Conversion

2

Min—Sec

Hour—Min

Day—Hour

Week—Day

Acc.

A1 2

Acc.

A12

Acc.

Acc.

A1 2

00 K N O

1.3
25.5
35.5
49.9
58.4

0.0
62.5
60.0
72.1
82.7

1.0
19.4
29.1
36.3
42.8

0.0
58.0
76.4
74.6
80.1

1.0
12.1
22.7
31.0
43.3

0.0
28.9
46.4
59.1
62.8

1.0
13.1
19.2
28.6
28.0

0.0
43.5
40.9
70.6
22.1
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Effect of Model Size
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* As we increase size of model
* Models get more accurate

* But, more impacted by pretraining
* Number of shots is inconsistent

e more training doesn’t lead to
robust reasoning by itself

* Difficult to detangle accuracy
* By scale itself is not a solution

40



Effect of Pretraining on Reasoning
+ high impact on reasoning performance
+ raises questions about how to design, and evaluate, LMs

- we are not making a causal statement about reasoning
- only evaluated on numerical reasoning
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e Will suffer from Zipf's Law
» Future is more unique than the past  :.. *
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Numerical Data (ND)

S
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 Augmentation during pretraining? I Ry e
* Add data to address specific reasoning

é extractive ST EERR R SR
* Good for fixing the issues we have observed ; S el - )
» Doesn't feel like the end goal i I o e oo |
Q: How many more
e soldiers did the king have

pre-trained than citizens?

{_A: 83 (192-109)

P
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https://arxiv.org/abs/2004.04487 i




What Can We Do?

* Maybe scaling further will help?
e Ultimately, they will just generalize perfectly?

* Neuro-symbolic language modeling?

 Give LMS access to KGs, calculators, etc.
» Barack’s Wife Hillary ... [ACL 2019] *

* Other for pretraining?
* Should words really with each other?

* https://arxiv.org/abs/1906.07241
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Thank you!
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