Courses
Courses

Data Science for Everyone
Our flagship course, Data Science for Everyone, is offered every semester and is designed especially for students with no prior programming or statistics experience.
Data Science for Everyone and Introduction to Data Science will be offered in the fall and spring semesters. Causal Inference will be offered in the fall and Responsible Data Science will be offered in the spring semester. Please read below for more on our courses, and see the College of Arts & Science Bulletin for further details.
Data Science for Everyone (DS-UA 111) is a course that will change your life. It will empower you to understand and use data in a principled way to better explain, make decisions in, and predict outcomes in the world. Students will learn to conduct hands-on research in Python using real-world datasets as instruments to practice and apply principles of scientific thinking and causal inference. This course is open to all students regardless of prior programming or statistics experience. Learn more about the course in this video.
This course will be offered in the fall and spring semesters. You can find a sample syllabus here. Prerequisite: None.
Next upcoming: Summer Session I, May 23–July 6, 2022
*Course is only available to current NYU students.

Intro to Data Science
Students who take Introduction to Data Science (DS-UA-112) will explore the theoretical issues, methods, tools, and problems that relate to data-rich issues in the humanities, social sciences, and sciences. Students will learn the core concepts of inference and computing while working with real data.
This course will be offered in the fall and spring semester. See the tentative syllabus here. Prerequisite: Effective starting in Fall 2021 – Data Science for Everyone (DS-UA-111) or department permission.
Next upcoming: Summer Session II, July 7–August 17, 2022
*Course is only available to current NYU students.

Causal Inference
We often want to know the relationship between cause and effect. In Causal Inference (DS-UA-201), students will learn to design and conduct experiments, define causation in the context of various liberal arts disciplines, and explore underlying theories, identify preconditions, and understand threats of validity to less-than-robust experiments. By the end of this course, students will be equipped to think about, interpret, and test for possible causal relationships between variables of interest.
This course will be offered in the fall semester. See the sample syllabus here. Prerequisite: Data Science for Everyone (DS-UA 111) and Introduction to Data Science (DS-UA 112).

Responsible Data Science
The first wave of data science focused on accuracy and efficiency: what can we do with data? The second wave is about responsibility: what should we do and not do? Responsible Data Science (DS-UA-202) tackles issues of ethics and responsibility in data science, including legal compliance, data quality, diversity, and algorithmic fairness, data and algorithm transparency, privacy, and data protection and security.
This course will be taught in the spring semester. See the tentative syllabus here. Prerequisite: Introduction to Data Science (DS-UA-112).

Advanced Topics in Data Science
Time series, deep learning, and other advanced machine learning topics. Provides the theoretical underpinnings of advanced data science techniques, as well as hands-on activities to build a practical toolkit. This course will be taught in the spring semester. Prerequisite: Introduction to Data Science (DS-UA-112) and completion of the probability and statistics requirement.

Practical Training in Data Science
DS-UA 204 Restricted to data science majors or minors, who must have earned both a 3.0 cumulative GPA and a 3.5 data science GPA and must have completed half of the data science program of study. Does not count toward any major or minor. May be repeated once (taken two times total) for credit. Internship. 2 or 4 points. Provides data science students with an opportunity to apply the knowledge gained in their coursework to practical problems in industry. This course is for majors and minors only and is graded on a pass/fail basis.
This course will be offered in the summer.