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Covariance matrix

1 The covariance matrix

To summarize datasets consisting of a single feature we can use the mean, median and variance,
and datasets containing two features using the covariance and the correlation coefficient. Here we
consider datasets containing multiple features, where each data point is modeled as a real-valued
d-dimensional vector.

If we model the data as a d-dimensional random vector, its mean is defined as the vector formed
by the means of its components.

Definition 1.1 (Mean of a random vector). The mean of a d-dimensional random vector x̃ is

E(x̃) :=


E (x̃[1])

E (x̃[2])

· · ·
E (x̃[d])

 . (1)

Similarly, we define the mean of a matrix with random entries as the matrix of entrywise means.

Definition 1.2 (Mean of a random matrix). The mean of a d1 × d2 matrix with random entries
X̃ is

E(X̃) :=


E
(
X̃[1, 1]

)
E
(
X̃[1, 2]

)
· · · E

(
X̃[1, d2]

)
E
(
X̃[2, 1]

)
E
(
X̃[2, 2]

)
· · · E

(
X̃[2, d2]

)
· · ·

E
(
X̃[d1, 1]

)
E
(
X̃[d1, 2]

)
· · · E

(
X̃[d1, d2]

)

 . (2)

Linearity of expectation holds also for random vectors and random matrices.

Lemma 1.3 (Linearity of expectation for random vectors and matrices). Let x̃ a d-dimensional
random vector, and let b ∈ Rm and A ∈ Rm×d for some positive integer m, then

E(Ax̃+ b) = AE(x̃) + b. (3)

Similarly let, X̃ be a d1× d2 random matrix, and let B ∈ Rm×d2 and A ∈ Rm×d1 for some positive
integer m, then

E(AX̃ +B) = AE(X̃) +B. (4)
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Proof. We prove the result for vectors, the proof for matrices is the same. The ith entry of
E(Ax̃+ b) equals

E(Ax̃+ b)[i] = E ((Ax̃+ b)[i]) by definition of the mean for random vectors (5)

= E

(
d∑
j=1

A[i, j]x̃[j] + b[i]

)
(6)

=
d∑
j=1

A[i, j]E (x̃[j]) + b[i] by linearity of expectation for scalars (7)

= (AE(x̃) + b)[i]. (8)

We usually estimate the mean of random vectors by computing their sample mean, which equals
the vector of sample means of the entries.

Definition 1.4 (Sample mean of multivariate data). Let X := {x1, x2, . . . , xn} denote a set of
d-dimensional vectors of real-valued data. The sample mean is the entry-wise average

µX :=

∑n
i=1 xi
n

. (9)

When manipulating a random vector within a probabilistic model, it may be useful to know the
variance of linear combinations of its entries, i.e. the variance of the random variable 〈v, x̃〉 for
some deterministic vector v ∈ Rd. By linearity of expectation, this is given by

Var
(
vT x̃

)
= E

(
(vT x̃− E(vT x̃))2

)
(10)

= E
(
(vT c(x̃))2

)
(11)

= vTE
(
c(x̃)c(x̃)T

)
v, (12)

where c(x̃) := x̃−E(x̃) is the centered random vector. For an example where d = 2 and the mean
of x̃ is zero we have,

E
(
c(x̃)c(x̃)T

)
= E

(
x̃x̃T

)
(13)

= E

([
x̃[1]

x̃[2]

] [
x̃[1] x̃[2]

])
(14)

= E

([
x̃[1]2 x̃[1]x̃[2]

x̃[1]x̃[2] x̃[2]2

])
(15)

=

[
E(x̃[1]2) E(x̃[1]x̃[2])

E(x̃[1]x̃[2]) E(x̃[2]2)

]
(16)

=

[
Var (x̃[1]) Cov (x̃[1], x̃[2])

Cov (x̃[1], x̃[2]) Var (x̃[2])

]
. (17)

This motivates defining the covariance matrix of the random vector as follows.
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Definition 1.5 (Covariance matrix). The covariance matrix of a d-dimensional random vector x̃
is the d× d matrix

Σx̃ := E
(
c(x̃)c(x̃)T

)
(18)

=


Var (x̃[1]) Cov (x̃[1], x̃[2]) · · · Cov (x̃[1], x̃[d])

Cov (x̃[1], x̃[2]) Var (x̃[2]) · · · Cov (x̃[2], x̃[d])
...

...
. . .

...

Cov (x̃[1], x̃[d]) Cov (x̃[2], x̃[d]) · · · Var (x̃[d])

 , (19)

where c(x̃) := x̃− E(x̃).

The covariance matrix encodes the variance of any linear combination of the entries of a random
vector.

Lemma 1.6. For any random vector x̃ with covariance matrix Σx̃, and any vector v

Var
(
vT x̃

)
= vTΣx̃v. (20)

Proof. This follows immediately from Eq. (12).

Example 1.7 (Cheese sandwich). A deli in New York is worried about the fluctuations in the cost
of their signature cheese sandwich. The ingredients of the sandwich are bread, a local cheese, and
an imported cheese. They model the price in cents per gram of each ingredient as an entry in a
three dimensional random vector x̃. x̃[1], x̃[2], and x̃[3] represent the price of the bread, the local
cheese and the imported cheese respectively. From past data they determine that the covariance
matrix of x̃ is

Σx̃ =

 1 0.8 0

0.8 1 0

0 0 1.2

 . (21)

They consider two recipes; one that uses 100g of bread, 50g of local cheese, and 50g of imported
cheese, and another that uses 100g of bread, 100g of local cheese, and no imported cheese. By
Lemma 1.6 the standard deviation in the price of the first recipe equals

σ100x̃[1]+50x̃[2]+50x̃[3] =

√√√√√√[100 50 50
]

Σx̃

100

50

50

 (22)

= 153 cents. (23)

The standard deviation in the price of the second recipe equals

σ100x̃[1]+100x̃[2] =

√√√√√√[100 100 0
]

Σx̃

100

100

0

 (24)

= 190 cents. (25)
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Figure 1: Canadian cities. Scatterplot of the latitude and longitude of the main 248 cities in
Canada.

Even though the price of the imported cheese is more volatile than that of the local cheese,
adding it to the recipe lowers the variance of the cost because it is uncorrelated with the other
ingredients. 4

A natural way to estimate the covariance matrix from data is to compute the sample covariance
matrix.

Definition 1.8 (Sample covariance matrix). Let X := {x1, x2, . . . , xn} denote a set of d-dimensional
vectors of real-valued data. The sample covariance matrix equals

ΣX :=
1

n

n∑
i=1

c(xi)c(xi)
T (26)

=


σ2
X[1] σX[1],X[2] · · · σX[1],X[d]

σX[1],X[2] σ2
X[2] · · · σX[2],X[d]

...
...

. . .
...

σX[1],X[d] σX[2],X[d] · · · σ2
X[d]

 , (27)

where c(xi) := xi − µX for 1 ≤ i ≤ n, X[j] := {x1[j], . . . , xn[j]} for 1 ≤ j ≤ d, σ2
X[i] is the sample

variance of X[i], and σX[i],X[j] is the sample covariance of the entries of X[i] and X[j].

Example 1.9 (Canadian cities). We consider a dataset which contains the locations (latitude and
longitude) of major cities in Canada (so d = 2 in this case). Figure 1 shows a scatterplot of the
data. The sample covariance matrix is

ΣX =

[
524.9 −59.8

−59.8 53.7

]
. (28)

The latitudes have much higher variance than the longitudes. Latitude and longitude are nega-
tively correlated because people at higher longitudes (in the east) tend to live at lower latitudes
(in the south). 4
The data are available at http://https://simplemaps.com/data/ca-cities

4

http://https://simplemaps.com/data/ca-cities


It turns out that just like the covariance matrix encodes the variance of any linear combination
of a random vector, the sample covariance matrix encodes the sample variance of any linear
combination of the data.

Lemma 1.10. For any dataset X = {x1, . . . , xn} of d-dimensional data and any vector v ∈ Rd,
let

Xv := {〈v, x1〉 , . . . , 〈v, xn〉} (29)

be the set of inner products between v and the elements in X. Then

σ2
Xv

= vTΣXv. (30)

Proof.

σ2
Xv

=
1

n

n∑
i=1

(
vTxi − µXv

)2
(31)

=
1

n

n∑
i=1

(
vTxi −

1

n

n∑
j=1

vTxj

)2

(32)

=
1

n

n∑
i=1

(
vT

(
xi −

1

n

n∑
j=1

xj

))2

(33)

=
1

n

n∑
i=1

(vT c(xi))
2 (34)

=
1

n

n∑
i=1

vT c(xi)c(xi)
Tv (35)

= vT

(
1

n

n∑
i=1

c(xi)c(xi)
T

)
v (36)

= vTΣXv. (37)

The component of a random vector lying in a specific direction can be computed by taking their
inner products with a unit-norm vector u pointing in that direction. As a result, by Lemma 1.6
the covariance matrix describes the variance of a random vector in any direction of its ambient
space. Similarly, the sample covariance matrix describes the sample variance of the data in any
direction by Lemma 1.10, as illustrated in the following example.

Example 1.11 (Variance in a specific direction). We consider the question of how the distribution
of Canadian cities varies in specific directions. This can be computed from the sample covariance
matrix. Let us consider a southwest-northeast direction. The positions of the cities in that
direction are given by the inner product of their locations with the unit-norm vector

v :=
1√
2

[
1

1

]
. (38)
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Figure 2: Sample variance in southwest-northeast direction. The left scatterplot shows the
centered data from Figure 1, and a fixed direction of the two-dimensional space represented by a
line going through the origin from southwest to northeast. The right plot shows the components
of each data point in the direction of the line and a kernel density estimate. The sample standard
deviation of the components is 15.1.

By Lemma 1.10 we have

σ2
Xu

=
1√
2

[
1 1

]
ΣX

1√
2

[
1

1

]
(39)

= 229, (40)

so the standard deviation is 15.1. Figure 2 shows the direction of interesting on the scatterplot,
as well as a kernel density estimate of the components of the positions in that direction. Figure 3
shows the sample variance in every possible direction, given by the quadratic form

q(v) := vTΣXv, (41)

for all possible unit-norm vectors v. 4

2 Principal component analysis

As explained at the end of the last section, the covariance matrix Σx̃ of a random vector x̃
encodes the variance of the vector in every possible direction of space. In this section, we consider
the question of finding the directions of maximum and minimum variance. The variance in the
direction of a vector v is given by the quadratic form vTΣx̃v. By the following fundamental theorem
in linear algebra, quadratic forms are best understood in terms of the eigendecomposition of the
corresponding matrix.

Theorem 2.1 (Spectral theorem for symmetric matrices). If A ∈ Rd×d is symmetric, then it has
an eigendecomposition of the form

A =
[
u1 u2 · · · ud

]

λ1 0 · · · 0

0 λ2 · · · 0

· · ·
0 0 · · · λd


[
u1 u2 · · · ud

]T
, (42)
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Figure 3: Sample variance in different directions. The left plot shows the contours of the
quadratic form vTΣXv, where ΣX is the sample covariance matrix of the data in Figure 1. The unit
circle, where ||v||2 = 1, is drawn in red. The red arrow is a unit vector collinear with the dashed
red line on the left plot of Figure 2. The right plot shows the value of the quadratic function when
restricted to the unit circle. The red dot marks the value of the function corresponding to the
unit vector represented by the red arrow on the left plot. This value is the sample variance of the
data in that direction.

where the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd are real and the eigenvectors u1, u2, . . . , un are real
and orthogonal. In addition,

λ1 = max
||x||2=1

xTAx, (43)

u1 = arg max
||x||2=1

xTAx, (44)

λk = max
||x||2=1,x⊥u1,...,uk−1

xTAx, 2 ≤ k ≤ d− 1, (45)

uk = arg max
||x||2=1,x⊥u1,...,uk−1

xTAx, 2 ≤ k ≤ d− 1, (46)

λd = min
||x||2=1,x⊥u1,...,uk−1

xTAx, (47)

ud = arg min
||x||2=1,x⊥u1,...,uk−1

xTAx. (48)

In order to characterize the variance of a random vector in different directions, we just need to
perform an eigendecomposition of its covariance matrix. The first eigenvector u1 is the direction
of highest variance, which is equal to the corresponding eigenvalue. In directions orthogonal to
u1 the maximum variance is attained by the second eigenvector u2, and equals the corresponding
eigenvalue λ2. In general, when restricted to the orthogonal complement of the span of u1, . . . , uk
for 1 ≤ k ≤ d− 1, the variance is highest in the direction of the k + 1th eigenvector uk+1.

Theorem 2.2. Let x̃ be a random vector d-dimensional with covariance matrix Σx̃, and let u1,
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. . . , ud, and λ1 > . . . > λd denote the eigenvectors and corresponding eigenvalues of Σx̃. We have

λ1 = max
||v||2=1

Var(vT x̃), (49)

u1 = arg max
||v||2=1

Var(vT x̃), (50)

λk = max
||v||2=1,v⊥u1,...,uk−1

Var(vT x̃), 2 ≤ k ≤ d, (51)

uk = arg max
||v||2=1,v⊥u1,...,uk−1

Var(vT x̃), 2 ≤ k ≤ d. (52)

Proof. Covariance matrices are symmetric by definition. The result follows automatically from
Theorem 2.1 and Lemma 1.6.

We call the directions of the eigenvectors principal directions. The component of the centered
random vector c(x̃) := x̃− E(x̃) in each principal direction is called a principal component,

p̃c[i] := uTi c(x̃), 1 ≤ i ≤ d (53)

By Theorem 2.2 the variance of each principal component is the corresponding eigenvalue of the
covariance matrix,

Var (p̃c[i]) = uTi Σx̃ui (54)

= λiu
T
i ui (55)

= λi. (56)

Interestingly, the principal components of a random vectors are uncorrelated, which means that
there is no linear relationship between them.

Lemma 2.3. The principal components of a random vector x̃ are uncorrelated.

Proof. Let ui be the eigenvector of the covariance matrix corresponding to the ith principal com-
ponent. We have

E(p̃c[i]p̃c[j]) = E(uTi c(x̃)uTj c(x̃)) (57)

= uTi E(c(x̃)c(x̃)T )uj (58)

= uTi Σx̃uj (59)

= λju
T
i uj (60)

= 0, (61)

by orthogonality of the eigenvectors of a symmetric matrix.

In practice, the principal directions and principal components are computed by performing an
eigendecomposition of the sample covariance matrix of the data.

Algorithm 2.4 (Principal component analysis (PCA)). Given a dataset X containing n vectors
x1, x2, . . . , xn ∈ Rd with d features each, where n > d.

8



40 20 0 20 40
Centered longitude

10
0

10
20
30

Ce
nt

er
ed

 la
tit

ud
e

40 20 0 20 40
First principal component

0.00
0.02
0.04
0.06
0.08
0.10

De
ns

ity

40 20 0 20 40
Centered longitude

10
0

10
20
30

Ce
nt

er
ed

 la
tit

ud
e

40 20 0 20 40
Second principal component

0.00
0.02
0.04
0.06
0.08
0.10

De
ns

ity

Figure 4: Principal directions. The scatterplots in the left column show the centered data from
Figure 1, and the first (top) and second (bottom) principal directions of the data represented by
lines going through the origin. The right column shows the first (top) and second (bottom) princi-
pal components of each data point and their density. The sample variance of the first component
equals 531 (standard deviation: 23.1). For the second it equals 46.2 (standard deviation: 6.80)

1. Compute the sample covariance matrix of the data ΣX .

2. Compute the eigendecomposition of ΣX , to find the principal directions u1, . . . , ud.

3. Center the data and compute the principal components

pci[j] := uTj c(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ d, (62)

where c(xi) := xi − av(X)

When we perform PCA on a dataset, the resulting principal directions maximize (and minimize)
the sample variance. This again follows from the spectral theorem (Theorem 2.1), in this case
combined with Lemma 1.10.

Theorem 2.5. Let X contain n vectors x1, x2, . . . , xn ∈ Rd with sample covariance matrix ΣX ,
and let u1, . . . , ud, and λ1 > . . . > λd denote the eigenvectors and corresponding eigenvalues of
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ΣX . We have

λ1 = max
||v||2=1

σ2
Xv
, (63)

u1 = arg max
||v||2=1

σ2
Xv
, (64)

λk = max
||v||2=1,v⊥u1,...,uk−1

σ2
Xv
, 2 ≤ k ≤ d, (65)

uk = arg max
||v||2=1,v⊥u1,...,uk−1

σ2
Xv
, 2 ≤ k ≤ d. (66)

Proof. Sample covariance matrices are symmetric by definition. The result follows automatically
from Theorem 2.1 and Lemma 1.10.

In words, u1 is the direction of maximum sample variance, u2 is the direction of maximum sam-
ple variance orthogonal to u1, and in general uk is the direction of maximum variation that is
orthogonal to u1, u2, . . . , uk−1. The sample variances in each of these directions are given by
the eigenvalues. Figure 4 shows the principal directions and the principal components for the
data in Figure 1. Comparing the principal components to the component in the direction shown
in Figure 2, we confirm that the first principal component has larger sample variance, and the
second principal component has smaller sample variance.

Example 2.6 (PCA of faces). The Olivetti Faces dataset contains 400 64×64 images taken from
40 different subjects (10 per subject). We vectorize each image so that each pixel is interpreted
as a different feature. Figure 5 shows the center of the data and several principal directions, to-
gether with the standard deviations of the corresponding principal components. The first principal
components seem to capture low-resolution structure, which account for more sample variance,
whereas the last incorporate more intricate details. 4

3 Gaussian random vectors

Gaussian random vectors are a multidimensional generalization of Gaussian random variables.
They are parametrized by a vector and a matrix that are equal to their mean and covariance
matrix (this can be verified by computing the corresponding integrals).

Definition 3.1 (Gaussian random vector). A Gaussian random vector x̃ of dimension d is a
random vector with joint pdf

fx̃ (x) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
, (67)

where |Σ| denotes the determinant of Σ. The mean vector µ ∈ Rd and the covariance matrix
Σ ∈ Rd×d, which is symmetric and positive definite (all eigenvalues are positive), parametrize the
distribution.

Available at http://www.cs.nyu.edu/~roweis/data.html
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Center PD 1 PD 2 PD 3 PD 4 PD 5

330 251 192 152 130

PD 10 PD 15 PD 20 PD 30 PD 40 PD 50

90.2 70.8 58.7 45.1 36.0 30.8

PD 100 PD 150 PD 200 PD 250 PD 300 PD 359

19.0 13.7 10.3 8.01 6.14 3.06

Figure 5: The top row shows the data corresponding to three different individuals in the Olivetti
dataset. The sample mean and the principal directions (PD) obtained by applying PCA to the
centered data are depicted below. The sample standard deviation of each principal component is
listed below the corresponding principal direction.
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Figure 6: Contour surfaces of a Gaussian vector. The left image shows a contour plot
of the probability density function of the two-dimensional Gaussian random vector defined in
Example 3.2. The axes align with the eigenvectors of the covariance matrix, and are proportional
to the square root of the eigenvalues, as shown on the right image for a specific contour.

In order to better understand the geometry of the pdf of Gaussian random vectors, we analyze
their contour surfaces. The contour surfaces are sets of points where the density is constant. The
spectral theorem (Theorem 2.1) ensures that Σ = UΛUT , where U is an orthogonal matrix and Λ
is diagonal, and therefore Σ−1 = UΛ−1UT . Let c be a fixed constant. We can express the contour
surfaces as

c = xTΣ−1x (68)

= xTUΛ−1UTx (69)

=
d∑
i=1

(uTi x)2

λi
. (70)

The equation corresponds to an ellipsoid with axes aligned with the directions of the eigenvectors.
The length of the ith axis is proportional to

√
λi. We have assumed that the distribution is

centered around the origin (µ is zero). If µ is nonzero then the ellipsoid is centered around µ.

Example 3.2 (Two-dimensional Gaussian). We illustrate the geometry of the Gaussian proba-
bility distribution function with a two-dimensional example where µ is zero and

Σ =

[
0.5 −0.3

−0.3 0.5

]
. (71)

The eigendecomposition of Σ yields λ1 = 0.8, λ2 = 0.2, and

u1 =

[
1/
√

2

−1/
√

2

]
, u2 =

[
1/
√

2

1/
√

2

]
. (72)
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The left plot of Figure 6 shows several contours of the density. The right plot shows the axes for
the contour line

(uT1 x)2

λ1

+
(uT2 x)2

λ2

= 1, (73)

where the density equals 0.24. 4

When the entries of a Gaussian random vector are uncorrelated, then they are also independent.
The relationship between the entries is purely linear. This is not the case for most other random
distributions,

Lemma 3.3 (Uncorrelation implies mutual independence for Gaussian random variables). If all
the components of a Gaussian random vector x̃ are uncorrelated, then they are also mutually
independent.

Proof. If all the components are uncorrelated then the covariance matrix is diagonal

Σx̃ =


σ2

1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
d

 , (74)

where σi is the standard deviation of the ith component. Now, the inverse of this diagonal matrix
is just

Σ−1
x̃ =


1
σ2
1

0 · · · 0

0 1
σ2
2
· · · 0

...
...

. . .
...

0 0 · · · 1
σ2
d

 , (75)

and its determinant is |Σ| = ∏d
i=1 σ

2
i so that

fx̃ (a) =
1√

(2π)d |Σ|
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(76)

=
1∏d

i=1

√
(2π)σi

exp

(
d∑
i=1

−(x[i]− µ[i])2

2σ2
i

)
(77)

=
d∏
i=1

1√
(2π)σi

exp

(
−(x[i]− µ[i])2

2σ2
i

)
(78)

=
d∏
i=1

fx̃[i] (x[i]) . (79)

Since the joint pdf factors into the product of the marginals, the entries are all mutually indepen-
dent.

13



A fundamental property of Gaussian random vectors is that performing linear transformations on
them always yields vectors with joint distributions that are also Gaussian. This is a multidimen-
sional generalization of the univariate result. We omit the proof, which is very similar.

Theorem 3.4 (Linear transformations of Gaussian random vectors are Gaussian). Let x̃ be a
Gaussian random vector of dimension d with mean µx̃ and covariance matrix Σx̃. For any matrix
A ∈ Rm×d and b ∈ Rm, ỹ = Ax̃ + b is a Gaussian random vector with mean µx̃ := Aµx̃ + b and
covariance matrix Σỹ := AΣx̃A

T , as long as Σỹ is full rank.

By Theorem 3.4 and Lemma 3.3, the principal components of a Gaussian random vector are
independent. Let Σ := UΛUT be the eigendecomposition of the covariance matrix of a Gaussian
vector x̃. The vector containing the principal components

p̃c := UT x̃ (80)

has covariance matrix UTΣU = Λ, so the principal components are all independent. It is important
to emphasize that this is the case because x̃ is Gaussian. In most cases, there will be nonlinear
dependencies between the principal components (see Figure 4 for example).

In order to fit a Gaussian distribution to a dataset X := {x1, . . . , xn} of d-dimensional points, we
can maximize the log-likelihood of the data with respect to the mean and covariance parameters
assuming independent samples,

(µML,ΣML) := arg max
µ∈Rd,Σ∈Rd×d

log
n∏
i=1

1√
(2π)d |Σ|

exp

(
−1

2
(xi − µ)T Σ−1 (xi − µ)

)
(81)

= arg min
µ∈Rd,Σ∈Rd×d

n∑
i=1

(xi − µ)T Σ−1 (xi − µ) +
n

2
log |Σ| . (82)

The optimal parameters turn out to be the sample mean and the sample covariance matrix (we
omit the proof, which relies heavily on matrix calculus). One can therefore interpret the analysis
described in this chapter as fitting a Gaussian distribution to the data, but– as we hopefully have
made clear– the analysis is meaningful even if the data are not Gaussian.
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