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Regularization

1 Ridge regression

1.1 Motivation and definition

As seen in the previous notes, the OLS estimator can suffer from significant noise amplification
when the number of training data are small. This results in coefficients with very large amplitudes,
which overfit the noise in the training set, as illustrated by the left image in Figure 12. A popular
approach to avoid this problem is to add an extra term to the least-squares cost function, which
penalizes the norm of the coefficient vector . The goal is to promote solutions that yield a good fit to
the data using linear coefficients that are not too large. Modifying cost functions to favor structured
solutions is called regularization. Least-squares regression combined with `2-norm regularization is
known as ridge regression in statistics and as Tikhonov regularization in the literature on inverse
problems.

Definition 1.1 (Ridge regression). For any X ∈ Rp×n and y ∈ Rn the ridge-regression estimator
is the minimizer of the optimization problem

βRR := arg min
β
‖y −XTβ‖22 + λ‖β‖22, (1)

where λ > 0 is a fixed regularization parameter.

As in the case of least-squares regression, the ridge-regression estimator has a closed form solution.

Theorem 1.2 (Ridge-regression estimate). For any X ∈ Rp×n and y ∈ Rn we have

βRR =
(
XXT + λI

)−1
Xy. (2)

Proof. The cost function can be reformulated to equal a modified least-squares problem

βRR := arg min
β

∣∣∣∣∣∣∣∣[y0
]
−
[
XT
√
λI

]
β

∣∣∣∣∣∣∣∣2
2

. (3)

Applying the formula for the closed-form solution of the OLS estimator yields

βRR =
([
X
√
λI
] [
X
√
λI
]T)−1 [

X
√
λI
] [y

0

]
(4)

=
(
XXT + λI

)−1
Xy. (5)
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Figure 1: Singular values of the training matrix in Example 2.2 of the notes on linear regression
for different numbers of training data.

Notice that when λ→0, βRR converges to the least-squares estimator. When λ→∞, βRR converges
to zero.

The regularization parameter λ governs the trade-off between the term that promotes a good
model fit on the training set and the term that controls the magnitudes of the coefficients. Ideally
we would like to set the value of λ that achieves the best test error. However, we do not have
access to the test set when training the regression model (and even if we did, one should never use
test data for anything else other than evaluating test error!). We cannot use the training data to
determine λ, since λ = 0 obviously achieves the minimum error on the training data. Instead, we
use validation data, separate from the training and test data, to evaluate the error of the model for
different values of λ and select the best value. This approach for setting model hyper parameters
is commonly known as cross validation.

As shown in Figure 3, in the regime where the least-squares estimator overfits the training data,
the ridge-regression estimator typically also overfits for small values of λ, which is reflected in
a high validation error. Increasing λ improves the validation error, up until a point where the
error increases again, because the least-squares term loses too much weight with respect to the
regularization term. Figure 3 also shows the coefficients of the model applied to the data described
in Example 2.2 of the notes on linear regression for different values of λ. When λ is small, many
coefficients are large, which makes it possible to overfit the training noise through cancellations.
For larger λ their magnitudes decrease, eventually becoming too small to produce an accurate fit.

Figure 4 shows that ridge regression outperforms least-squares regression on the temperature
dataset for small values of n, and has essentially the same performance for larger values, when the
least-squares estimator does not overfit the training data (this is expected as the estimators are
equivalent for small λ values). The figure also shows that λ values selected by cross validation are
larger for small values of n, where regularization is more useful.

2



Least squares Ridge regression

200 500 1000 2000 5000
Number of training data

0.6

0.4

0.2

0.0

0.2

0.4

0.6
Co

ef
fic

ie
nt

s

Moose, WY
Montrose, CO
LaJunta, CO

200 500 1000 2000 5000
Number of training data

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
ef

fic
ie

nt
s

Moose, WY
Montrose, CO
LaJunta, CO

Figure 2: Coefficients of the least-squares (left) and ridge-regression (right) estimators computed
from the data described in Example 2.2 of the notes on linear regression for different values of
training data. All coefficients are depicted in light blue except the three that have the largest
magnitudes for large n, which correspond to the stations of Moose in Wyoming, and Montrose
and La Junta in Colorado.

1.2 Analysis under additive-noise model

In order to analyze the ridge-regression estimator, we consider data generated by a linear model
as in Section 4 of the notes on linear regression. The training data are equal to the n-dimensional
vector

ỹtrain := XTβtrue + z̃train, (6)

where X ∈ Rp×n contains n p-dimensional feature vectors. The noise z̃train is modeled as an
n-dimensional iid Gaussian vector with zero mean and variance σ2.

In that case, the ridge-regression cost function can be decomposed into the sum of two deterministic
quadratic forms centered at βtrue and at the origin, and a random linear function that depends
on the noise. By the same argument used to derive the decomposition of the OLS estimator, we
obtain

arg min
β
‖ỹtrain −XTβ‖22 + λ‖β‖22 = arg min

β
(β − βtrue)TXXT (β − βtrue) + λβTβ − 2z̃TtrainX

Tβ.

Figure 5 shows the different components for a simple example with two features. The following
theorem provides the distribution of the ridge-regression coefficient estimate for the additive model.

Theorem 1.3 (Ridge-regression coefficient estimate). If the training data follow the additive model
in Eq. (6), then the ridge regression coefficient estimate is a Gaussian random vector with mean

βbias :=

p∑
j=1

s2j 〈uj, βtrue〉
s2j + λ

uj (7)

3



10 4 10 3 10 2 10 1 100 101

Regularization parameter ( /n)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Av

er
ag

e 
er

ro
r (

de
g 

Ce
lsi

us
)

Training error
Validation error

10 4 10 3 10 2 10 1 100 101

Regularization parameter ( /n)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
ef

fic
ie

nt
s

Moose, WY
Montrose, CO
LaJunta, CO

Figure 3: The left graph shows the training and validation errors of the ridge-regression estimator
applied to the data described in Example 2.2 of the notes on linear regression for different values
of the regularization parameter λ. The number of training data is fixed to n = 202 training data.
The right figure shows the values of the model coefficients for the different λ values. All coefficients
are depicted in light blue except the three that have the largest magnitudes for large n, which
correspond to the stations of Moose in Wyoming, and Montrose and La Junta in Colorado.

and covariance matrix

ΣRR := σ2U diag p
j=1

(
s2j

(s2j + λ)2

)
UT , (8)

where diag p
j=1 (di) denotes a diagonal matrix with entries d1, . . . , dp.

Proof. By Theorem 1.2 the solution equals

β̃RR =
(
XXT + λI

)−1
X
(
XTβtrue + z̃train

)
(9)

=
(
US2UT + λUUT

)−1 (
US2UTβtrue + USV T z̃train

)
(10)

=
(
U(S2 + λI)UT

)−1 (
US2UTβtrue + USV T z̃train

)
(11)

= U(S2 + λI)−1UT
(
US2UTβtrue + USV T z̃train

)
(12)

= U(S2 + λI)−1S2UTβtrue + U
(
S2 + λI

)−1
SV T z̃train, (13)

because V is an orthogonal matrix.

In contrast to the OLS estimator, the ridge-regression estimator is not centered at the true coeffi-
cients. Instead, it is centered at βbias, which is the center of the deterministic quadratic component
in the cost function,

(β − βtrue)TXXT (β − βtrue) + λβTβ. (14)
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Figure 4: Performance of the ridge-regression estimator on the temperature data. The left image
shows the RMSE achieved by the model on the training and test sets, and on the 2016 data, for
different number of training data and compares it to the RMSE of least-squares regression. The
right graph shows the values of λ selected from a validation dataset of size 100 for each number
of training data.

As a result, the estimator has a systematic error equal to

βtrue − E
(
β̃RR

)
= βtrue − U(S2 + λI)−1S2UTβtrue (15)

=

p∑
j=1

〈uj, βtrue〉uj −
p∑
j=1

s2j 〈uj, βtrue〉
s2j + λ

uj (16)

=

p∑
j=1

λ 〈uj, βtrue〉
s2j + λ

uj. (17)

The expected error is called bias in statistics. The bias of ridge regression increases with λ, since
the derivative of (λ/(si+λ))2 with respect to λ equals 2λsi/(si+λ)3. As λ increases, the expected
value of the estimate is shrunk towards zero. This may seem puzzling at first: why not just set λ
to zero, and use the OLS estimate which is unbiased? The reason is the variance of the estimate.
Increasing λ decreases the variance of the estimator.

In OLS (λ = 0) the variance in the direction of each left singular vector of the feature matrix is
proportional to σ2/s2i , where si is the corresponding singular value. This produces severe noise
amplification if any of the singular values are very small. As explained in Section 4.3 of the
notes on linear regression, this results in significant test error if the sample covariance matrix is
not a good approximation of the true covariance matrix, which often occurs when the number of
training data is small. The role of λ is to neutralize the contribution of the small singular values.
If λ� s2i , then the variance in the direction of the corresponding singular vector is approximately
equal to σ2s2i /λ

2, which is much smaller than σ2/s2i . The ideal value of λ strikes a balance between
increasing the bias and decreasing the variance. In statistics this is known as the bias-variance
tradeoff. Figure 7 shows the distribution of the ridge-regression estimator for a simple example
when the value of λ varies. When λ is very small, the estimate resembles the OLS estimate: it is
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Figure 5: Visualization of the different components of the ridge-regression cost function for a
simple 2D example. The regularization parameter is set to λ := 0.05. The top row shows the
two deterministic quadratic forms cost function: the least square component (left) and the reg-
ularization component (right). The bottom left plot shows the combination of both quadratic
components. The resulting quadratic is centered at a point βbias, which is the expected value of
the ridge-regression coefficient estimate. Finally, the bottom right plot shows a realization of the
ridge-regression cost function obtained by adding the deterministic quadratic components with the
random linear component that depends on the training response. The minimum of the resulting
cost function is denoted by βRR. For comparison, we also include the minimum of the OLS cost
function βOLS.

6



−3 −2 −1 0 1 2 3 4 5 6

β[2]

−2

−1

0

1

2

3

4

β[1]
βOLS

βbias
βRR

βtrue

0.50

1.00

2.50

2.50

5.00

5.00

7.50

7.50

−3 −2 −1 0 1 2 3 4 5 6

β[2]

−2

−1

0

1

2

3

4

β[1]
βOLS

βbias

βRR

βtrue
0.50

1.00

2.50

5.00

5.00

7.50

7.50

−3 −2 −1 0 1 2 3 4 5 6

β[2]

−2

−1

0

1

2

3

4

β[1]
βOLS

βbias
βRR

βtrue

0.50
1.00

2.50

2.50

5.00

5.00

7.50

7.50

−3 −2 −1 0 1 2 3 4 5 6

β[2]

−2

−1

0

1

2

3

4

β[1]
βOLS

βbias
βRR

βtrue

0.50

1.00

2.50

2.50

5.00

5.00

7.50

7.50

Figure 6: Different realizations of the ridge-regression cost function corresponding to different
realizations of the noise (the true coefficients and the feature matrix remain the same) for the
example in Figure 5. The regularization parameter is set to λ := 0.05.

almost centered at the true coefficients, but it varies wildly in the direction of the singular vectors
associated with small singular values. As λ increases the variance decreases, but the center of the
distribution strays farther and farther away from the true coefficients.

2 Regularization via early stopping

2.1 Gradient descent

Gradient descent is the simplest and most popular iterative optimization method. The idea is
to make progress towards the minimum of a cost function by moving in the direction of steepest
descent1. In this section we analyze the properties of a linear-regression estimate obtained by
applying gradient descent to the least-squares cost function. For a response vector y ∈ Rn and a

1For a cost function f , the directional derivative in the direction of a unit-norm vector v at a point x equals
〈∇f(x), v〉. In the direction −∇f(x) it equals − ||∇f(x)||2. This is the smallest possible derivative since
〈∇f(x), v〉 ≥ − ||v||2 ||∇f(x)||2 by the Cauchy-Schwarz inequality.
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Figure 7: The left image is a scatterplot of the ridge-regression estimate corresponding to different
noise realizations of the example in Figure 6. The right image is a heatmap of the distribution of
the estimate, which follows a Gaussian distribution with the mean and covariance matrix derived
in Theorem 1.3. Each row corresponds to a different choice of the regularization parameter λ,
illustrating the corresponding bias-variance tradeoff.
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feature matrix X :=
[
x1 x2 · · · xn

]
∈ Rp×n the gradient of function equals

∇f(β) = XXTβ −Xy. (18)

The gradient-descent updates are

β(k+1) := β(k) + αkX
(
y −XTβ(k)

)
(19)

= β(k) + αk

n∑
i=1

(
y[i]− 〈xi, β(k)〉

)
xi, (20)

where β(k) ∈ Rp and αk > 0 are the coefficient estimate and the step size respectively at iteration
k. Gradient descent iteratively corrects the coefficient vector. If an entry of the response vector
y[i] is larger than the linear estimate 〈xi, β(k)〉 we add a small multiple of x(i) in order to reduce
the difference. If it is smaller we subtract it.

The following theorem provides a closed-form solution for the iterations of gradient descent in
terms of the SVD of the feature matrix when the step size is constant.

Theorem 2.1. Let Xp×n, n ≥ p, be full rank. The k + 1th iteration of gradient descent with a
constant step size α > 0 applied to the least-squares cost function equals

β(k+1) = U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + U diag p

j=1

(
1−

(
1− αs2j

)k+1

sj

)
V Ty, k = 1, 2, 3 . . . ,

where USV T is the SVD of X, β(0) ∈ Rp is the initial coefficient vector, and diag p
j=1 (di) denotes

a diagonal matrix with entries d1, . . . , dp.

Proof. We reformulate Eq. (19) as

β(k+1) =
(
I − αXXT

)
β(k) + αXy, (21)

which yields

β(k+1) =
(
I − αXXT

)k+1
β(0) +

k∑
i=0

(
I − αXXT

)i
αXy. (22)

Since p ≤ n and X is full rank, we have UUT = UTU = I, so that

β(k+1) =
(
UUT − αUS2UT

)k+1
β(0) + α

k∑
i=0

(
UUT − αUS2UT

)i
USV Ty (23)

= U
(
I − αS2

)k+1
UTβ(0) + αU

k∑
i=0

(
I − αS2

)i
SV Ty (24)

= U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + αU diag p

j=1

(
k∑
i=0

(
1− αs2j

)i)
SV Ty. (25)

By the geometric-sum formula we conclude:

β(k+1) = U diag p
j=1

((
1− αs2j

)k+1
)
UTβ(0) + αU diag p

j=1

(
1−

(
1− αs2j

)k+1

αs2j

)
SV Ty. (26)

9



An immediate consequence is that gradient descent converges to the optimal solution if the step
size is small enough.

Corollary 2.2. Let 0 < α < 2/s21, where s1 is the largest singular value of X. If X is full rank,
gradient descent with step size α converges to the minimum of the least-squares cost function.

Proof. If 0 < α < 2/s21 ≤ 2/s2j for 1 ≤ j ≤ p then
∣∣1− αs2j ∣∣ < 1 so limk→∞

(
1− αs2j

)k
= 0. This

implies

lim
k→∞

β(k) = lim
k→∞

U diag p
j=1

((
1− αs2j

)k)
UTβ(0) + U diag p

j=1

(
1−

(
1− αs2j

)k
sj

)
V Ty (27)

= US−1V Ty, (28)

which is the solution to the least-squares problem.

The response estimate produced by gradient descent consequently converges to the OLS prediction.
The rate of convergence is governed by the condition number of the feature matrix. To simplify
the exposition, we assume that the coefficient estimate is initialized to equal the zero vector.

Corollary 2.3. Let yOLS := XTβOLS, where βOLS is the solution to the least-squares problem, and
y (k) := Xβ (k), where β (k) is the kth iteration of gradient descent initialized with the zero vector.
If the step size is set to α := 1/s21 then∣∣∣∣yOLS − y (k)

∣∣∣∣
2

||y||2
≤
(

1− s2p
s21

)k
, (29)

where s1 is the largest singular value of X and sp is the smallest.

Proof. By Theorem 2.1, if β(0) is the zero vector,

y (k) := XTβ(k) (30)

= V SUTU diag p
j=1

(
1−

(
1− αs2j

)k
sj

)
V Ty (31)

= V V Ty − V diag p
j=1

((
1− αs2j

)k)
V Ty. (32)

The operator norm ||M || of a matrix M is equal to its largest singular value, so for any vector w
||Mw|| ≤ ||M || ||w||2. Since yOLS = V V Ty (see Section 4.2 of the notes on linear regression), this
implies ∣∣∣∣yOLS − y (k)

∣∣∣∣
2

=
∣∣∣∣∣∣V diag p

j=1

((
1− αs2j

)k)
V Ty

∣∣∣∣∣∣
2

(33)

≤ ||V ||
∣∣∣∣∣∣diag p

j=1

((
1− αs2j

)k)∣∣∣∣∣∣ ∣∣∣∣V Ty
∣∣∣∣
2

(34)

≤
∣∣∣∣1− s2p

s21

∣∣∣∣k ||y||2 (35)

because
(
1− αs2p

)k
is the largest singular value of the diagonal matrix, and V has orthonormal

columns.
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Figure 8: Iterates of gradient descent initialized at the origin with a fixed step size for the example
in Figure 6. Each image corresponds to a different noise realization.

If the feature matrix is well conditioned, convergence is fast, but if there are singular values that
are much smaller than the rest, gradient descent can take very long to converge. Large condition
numbers are common in practical applications: the feature matrix in the temperature-prediction
example has condition number around 103 (see Figure 1). If one cares about finding the least-
squares solution fast, the method of choice should instead be conjugate gradients method, an
optimization technique designed to achieve fast convergence. However, what we really care about
is achieving a good estimate. It may therefore be of interest to evaluate the estimate produced by
gradient descent for a fixed value of k, before convergence occurs. This technique is known as early
stopping in the machine-learning literature. The following theorem provides a characterization of
the estimate obtained via early stopping for data generated according to an additive generative
model.

Theorem 2.4 (Gradient-descent coefficient estimate). If the training data follow the additive
model in Eq. (6), then the coefficient estimate obtained by running gradient descent initialized at
the origin until the kth iteration with a constant step size α > 0 is a Gaussian random vector with
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Figure 9: The left image is a scatterplot of the gradient-descent estimate corresponding to different
noise realizations of the example in Figure 8. The right image is a heatmap of the distribution of
the estimate, which follows a Gaussian distribution with the mean and covariance matrix derived in
Theorem 2.4. Each row corresponds to a different choice of the number of iterations k, illustrating
the corresponding bias-variance tradeoff.
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mean

βbias :=

p∑
j=1

(
1− (1− αs2j)k

)
〈uj, βtrue〉uj (36)

and covariance matrix

ΣGD := σ2U diag p
j=1

(
(1− (1− αs2j)k)2

s2j

)
UT , (37)

where diag p
j=1 (di) denotes a diagonal matrix with entries d1, . . . , dp.

Proof. To ease notation, let τj := 1− αs2j . By Theorem 2.1

β̃(k) = U diag p
j=1

(
1− τ kj
sj

)
V T
(
XTβtrue + z̃train

)
(38)

= U diag p
j=1

(
1− τ kj
sj

)
V T
(
V SUTβtrue + z̃train

)
(39)

= U diag p
j=1

(
1− τ kj

)
UTβtrue + U diag p

j=1

(
1− τ kj
sj

)
V T z̃train. (40)

2.2 Early stopping

As shown in Figure 8 the first iterates of gradient descent make fast progress along the directions
of left singular vectors of the feature matrix corresponding to large singular values. Afterwards,
the iterates move along the directions corresponding to the smaller singular values, until they
converge to the OLS estimate. As a result, if we stop at iteration k, the expected value of the
iterate is not centered at βtrue; it is closer to the point at which gradient descent is initialized (the
origin, in our analysis and examples). This produces a bias equal to

∑p
j=1(1− αs2j)k 〈uj, βtrue〉uj

in the estimate, which decreases as k increases. As in the case of ridge regression, the reduction
in bias is counterbalanced by an increase of the variance. Because the algorithm mostly makes
progress in the direction of the singular vectors corresponding to the largest singular values, there
is not as much variance in the direction of those corresponding to the small singular values. This
is good news, because that is the source of most of the variance in the OLS estimate. At iteration
k, the variance in the direction of the jth left singular vector equals

σ2(1− (1− αs2j)k)2
s2j

. (41)

For small k and small αsj, we have (1− αs2j)k ≈ 1− kαs2j (because for x ≈ 0 we have (1− x)k ≈
1 − kx), so the variance of the corresponding component approximately equals α2k2σ2s2j . Then,
as k increases, the variance also increases, eventually approaching σ2/s2j , as in OLS. The ideal
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Figure 10: The left graph shows the training and validation errors of the gradient-descent estimator
applied to the temperature-prediction task as the iterations progress. The number of training data
is fixed to n = 200 training data. The right figure shows the values of the corresponding model
coefficients. All coefficients are depicted in light blue except the three that have the largest
magnitudes for large n, which correspond to the stations of Moose in Wyoming, and Montrose
and La Junta in Colorado.

value of k should optimize the bias-variance tradeoff, as in ridge regression. Figure 9 shows the
distribution of the gradient-descent estimator for a simple example when k varies. For large k, the
estimate resembles the OLS estimate: it is almost centered at the true coefficients, but it varies
wildly in the direction of the singular vectors associated with small singular values. As k decreases
the variance along those directions also decreases, but the center of the distribution strays farther
and farther away from the true coefficients.

Example 2.5 (Temperature prediction via gradient descent with early stopping). We apply gradi-
ent descent to minimize the least-squares cost function for the data in Example 2.2 of the notes on
linear regression. The coefficients are initialized to be zero. The number of iterations of gradient
descent are chosen by minimizing the error over a separate validation set. In addition, we test
the model on data from 2016. The left image in Figure 10 shows training and validation errors of
the gradient-descent estimator for n = 200 training data as the iterations progress. Both initially
decrease, but at one point the validation error starts increasing due to overfitting. The right im-
age shows that the coefficients amplitudes increase until they reach the value of the least-squares
estimator. The minimum validation error is reached when the coefficients are still not too large.
Figure 11 shows the number of iterations selected for different numbers of training data based
on validation error. Figure 12 shows the corresponding coefficients and compares them the OLS
coefficients. The effect achieved by early stopping is reminiscent of ridge regression. Figure 13
compares the error obtained by the estimator on training and test data compared to least squares
and ridge regression. The method avoids the overfitting issues of least squares when the number
of training data is small, and achieves very similar results to ridge regression. 4
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Figure 11: Results of selecting the number of iterations via cross-validation for the experiment
described in Example 2.5. The image shows the number of iterations at which the gradient-descent
estimator achieves minimum validation error for different numbers of training data. The maximum
number of iterations was limited to 105.
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Figure 12: Coefficients of the least-squares (left) and gradient-descent (right) estimators for the
experiment described in Example 2.5 for different values of training data. All coefficients are de-
picted in light blue except the three that have the largest magnitudes for large n, which correspond
to the stations of Moose in Wyoming, and Montrose and La Junta in Colorado.
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Figure 13: Performance of the gradient-descent estimator for the experiment described in Exam-
ple 2.5. The left image compares the method to the least-squares estimator on the training and
test sets, and on the 2016 data, for different number of training data. The right image shows the
same comparison to the ridge-regression estimator.
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